Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Conditional Molecular Structure Generation

License

NotificationsYou must be signed in to change notification settings

Ferg-Lab/molgen

GitHub Actions Build Status

This package implements Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs) for generative tasks such as conditional molecular structure generation.

Getting Started

Installation

To usemolgen, you will need an environment with the following packages:

For running and visualizing examples:

Once you have these packages installed, you can installmolgen in the same environment using

$ pip install -e .

Usage

Once installed, you can use the package. This example trains a WGANGP to reproduce the alanine dipeptide backbone atoms conditioned on the backbone diedral angles ($\phi , \psi$). More detailed examples can be found in theexamples directory.

frommolgen.modelsimportWGANGPfrompathlibimportPathimportmdtajasmdimporttorchimportnumpyasnp# load datapdb_fname='examples/data/alanine-dipeptide-nowater.pdb'trj_fnames= [str(i)foriinPath('examples/data/').glob('alanine-dipeptide-*-250ns-nowater.xtc')]trjs= [md.load(t,top=pdb_fname).center_coordinates()fortintrj_fnames]# process xyz coordinates and conditioning variablesxyz=list()phi_psi=list()fortrjintrjs:t_backbone=trj.atom_slice(trj.top.select('backbone')).center_coordinates()n=trj.xyz.shape[0]_,phi=md.compute_phi(trj)_,psi=md.compute_psi(trj)xyz.append(torch.tensor(t_backbone.xyz.reshape(n,-1)).float())phi_psi.append(torch.tensor(np.concatenate((phi,psi),-1)).float())# ininstantiate the modelmodel=WGANGP(xyz[0].shape[1],phi_psi[0].shape[1])# fit the modelmodel.fit(xyz,phi_psi,max_epochs=25)# Generate synthetic configurationsxyz_gen=model.generate(torch.cat(phi_psi))xyz_gen=xyz_gen.reshape(xyz_gen.size(0),-1,3)# Save model checkpointmodel.save('ADP.ckpt')# Load from checkpointmodel=WGANGP.load_from_checkpoint('ADP.ckpt')

Supports both generators based on both Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs). The example above uses GANs, DDPMs support an equivalent API -- for example,

frommolgen.modelsimportDDPMmodel=DDPM(....)

Code for the DDPM models are taken from:https://github.com/lucidrains/denoising-diffusion-pytorch (version 1.0.5)

Copyright

Copyright (c) 2023, Kirill Shmilovich

Acknowledgements

Project based on theComputational Molecular Science Python Cookiecutter version 1.1.

About

Conditional Molecular Structure Generation

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp