Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Rotational region detection based on Faster-RCNN.

License

NotificationsYou must be signed in to change notification settings

DetectionTeamUCAS/R2CNN_Faster-RCNN_Tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Abstract

This is a tensorflow re-implementation ofR2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection.
It should be noted that we did not re-implementate exactly as the paper and just adopted its idea.

This project is based onFaster-RCNN, and completed byYangXue andYangJirui.

DOTA test results

1

Comparison

Part of the results are fromDOTA paper.

Task1 - Oriented Leaderboard

ApproachesmAPPLBDBRGTFSVLVSHTCBCSTSBFRAHASPHC
SSD10.5939.839.090.6413.180.260.391.1116.2427.579.2327.169.093.031.051.01
YOLOv221.3939.5720.2936.5823.428.852.094.8244.3438.3534.6516.0237.6247.2325.57.45
R-FCN26.7937.838.213.6437.266.742.65.5922.8546.9366.0433.3747.1510.625.1917.96
FR-H36.2947.16619.851.7414.8712.86.8856.2659.9757.3247.8348.78.2337.2523.05
FR-O52.9379.0969.1217.1763.4934.237.1636.289.1969.658.9649.452.5246.6944.846.3
R2CNN60.6780.9465.7535.3467.4459.9250.9155.8190.6766.9272.3955.0652.2355.1453.3548.22
RRPN61.0188.5271.2031.6659.3051.8556.1957.2590.8172.8467.3856.6952.8453.0851.9453.58
ICN68.2081.4074.3047.7070.3064.9067.8070.0090.8079.1078.2053.6062.9067.0064.2050.20
R2CNN++71.1689.6681.2245.5075.1068.2760.1766.8390.9080.6986.1564.0563.4865.3468.0162.05

Task2 - Horizontal Leaderboard

ApproachesmAPPLBDBRGTFSVLVSHTCBCSTSBFRAHASPHC
SSD10.9444.7411.216.226.91210.2411.3415.5912.5617.9414.734.554.550.531.01
YOLOv239.276.933.8722.7334.8838.7332.0252.3761.6548.5433.9129.2736.8336.4438.2611.61
R-FCN47.2479.3344.2636.5853.5339.3834.1547.2945.6647.7465.8437.9244.2347.2350.6434.9
FR-H60.4680.3277.5532.8668.1353.6652.4950.0490.4175.0559.595749.8161.6956.4641.85
R2CNN----------------
FPN72.0088.7075.1052.6059.2069.4078.8084.5090.6081.3082.6052.5062.1076.6066.3060.10
ICN72.5090.0077.7053.4073.3073.5065.0078.2090.8079.1084.8057.2062.1073.5070.2058.10
R2CNN++75.3590.1881.8855.3073.2972.0977.6578.0690.9182.4486.3964.5363.4575.7778.2160.11

Face Detection

Environment: NVIDIA GeForce GTX 1060
2

ICDAR2015

3

Requirements

1、tensorflow >= 1.2
2、cuda8.0
3、python2.7 (anaconda2 recommend)
4、opencv(cv2)

Download Model

1、please downloadresnet50_v1resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、please downloadmobilenet_v2 pre-trained model on Imagenet, put it to data/pretrained_weights/mobilenet.
3、please downloadtrained model by this project, put it to output/trained_weights.

Data Prepare

1、please downloadDOTA
2、crop data, reference:

cd $PATH_ROOT/data/io/DOTApython train_crop.py python val_crop.py

3、data format

├── VOCdevkit│   ├── VOCdevkit_train│       ├── Annotation│       ├── JPEGImages│    ├── VOCdevkit_test│       ├── Annotation│       ├── JPEGImages

Compile

cd $PATH_ROOT/libs/box_utils/python setup.py build_ext --inplace
cd $PATH_ROOT/libs/box_utils/cython_utilspython setup.py build_ext --inplace

Demo

Select a configuration file in the folder (libs/configs/) and copy its contents into cfgs.py, then download the correspondingweights.

DOTA

python demo_rh.py --src_folder='/PATH/TO/DOTA/IMAGES_ORIGINAL/'                   --image_ext='.png'                   --des_folder='/PATH/TO/SAVE/RESULTS/'                   --save_res=False                  --gpu='0'

FDDB

python camera_demo.py --gpu='0'

Eval

python eval.py --img_dir='/PATH/TO/DOTA/IMAGES/'                --image_ext='.png'                --test_annotation_path='/PATH/TO/TEST/ANNOTATION/'               --gpu='0'

Inference

python inference.py --data_dir='/PATH/TO/DOTA/IMAGES_CROP/'                          --gpu='0'

Train

1、If you want to train your own data, please note:

(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py     (3) Add data_name to line 75 of $PATH_ROOT/data/io/read_tfrecord.py

2、make tfrecord

cd $PATH_ROOT/data/io/  python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/VOCdevkit/VOCdevkit_train/'                                    --xml_dir='Annotation'                                   --image_dir='JPEGImages'                                   --save_name='train'                                    --img_format='.png'                                    --dataset='DOTA'

3、train

cd $PATH_ROOT/toolspython train.py

Tensorboard

cd $PATH_ROOT/output/summarytensorboard --logdir=.

Citation

Some relevant achievements based on this code.

@article{[yang2018position](https://ieeexplore.ieee.org/document/8464244),title={Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network},author={Yang, Xue and Sun, Hao and Sun, Xian and  Yan, Menglong and Guo, Zhi and Fu, Kun},journal={IEEE Access},volume={6},pages={50839-50849},year={2018},publisher={IEEE}}@article{[yang2018r-dfpn](http://www.mdpi.com/2072-4292/10/1/132),title={Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks},author={Yang, Xue and Sun, Hao and Fu, Kun and Yang, Jirui and Sun, Xian and Yan, Menglong and Guo, Zhi},journal={Remote Sensing},volume={10},number={1},pages={132},year={2018},publisher={Multidisciplinary Digital Publishing Institute}}

About

Rotational region detection based on Faster-RCNN.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp