Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Rapi package is an interface to make requests from data providers. Current version is able to connect to APIs of EDDS of CBRT (Central Bank of the Republic of Türkiye) and FRED API of FED (Federal Reserve Bank).

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

DataRapi/Rapi

Repository files navigation

CRAN_Status_BadgeR-CMD-check

DOI

Overview

Rapi package is an interface to make requests from data providers.Current version is able to connect to APIs ofEDDS of CBRT (Central Bank of the Republic of Türkiye)andFRED API of FED (Federal Reserve Bank).

Installation

You can install the package from CRAN using:

install.packages("Rapi")

Development version

Or you can install the development version from GitHub:

library(devtools)install_github("DataRapi/Rapi")

Usage

set_api_key

# Set API keys for `EDDS`set_api_key("YOUR_EDDS_API_KEY","evds","env")# Set API keys for FREDset_api_key("YOUR_FRED_API_KEY","fred","env")# Alternatively, you can use file-based configurationset_api_key("YOUR_EDDS_API_KEY","evds","file")set_api_key("YOUR_FRED_API_KEY","fred","file")

get_series

Example 1: Explicit Sources

# Define a template for series with explicit sourcestemplate<-"    UNRATE        #fred (series)    bie_abreserv  #evds (table)    TP.AB.B1      #evds (series)"

Example 2: Index-based Definition

# Define a template for series with indexestemplate<-"    UNRATE    bie_abreserv    TP.AB.B1"

In the index-based definition, the package will automatically figure out the sourceand base from the provided indexes.

# Fetch data based on the templateobj<- get_series(template,start_date="2012/05/22",cache=FALSE)# Display the resultsprint(obj)======================================Rapi_GETPREP=======status:completedindex:UNRATE#fred (series)bie_abreserv#evds (table)TP.AB.B1#evds (series)start_date:2012/05/22end_date:2100-01-01status [completed]lines$data===================!eachlinecorrespondstoadifferentsetoffuncanddatadatacanbereachedasbelow-->obj$lines$data# A tibble: 3 × 8indexsourcebasecommentsfreqfnc_strfncdata<chr><chr><chr><chr><chr><chr><namedlist><list>1UNRATEfredseries fred (series)nullfred_series_fnc<fn><tibble [139 ×2]>2bie_abreservevdstable  evds (table)nullevds_table_fnc<fn><tibble [138 ×6]>3TP.AB.B1evdsseries evds (series)nullevds_series_fnc<fn><tibble [138 ×2]>data===================  (combined)dataacombineddataframewillbeconstructedcombineddatacanbereachedas-->obj$data# A tibble: 138 × 8dateUNRATETP_AB_B1TP_AB_B2TP_AB_B3TP_AB_B4TP_AB_B6TP.AB.B1<date><dbl><dbl><dbl><dbl><dbl><dbl><dbl>12012-06-018.212438.83062.17704.95500.113204.12438.22012-07-018.215068.85044.17526.100113.117639.15068.32012-08-018.115706.93006.16191.108712.124903.15706.42012-09-017.817289.9479716106.112086.12819217289.52012-10-017.817675.99534.14575.117208.131783.17675.62012-11-017.718200.100162.15532.118362.133894.18200.72012-12-017.919235.99933.18326.119168.13749319235.82013-01-01819860.104349.15466.124210.13967619860.92013-02-017.719204.104023.14783.123227.138010.19204.102013-03-017.521037.105658.15164.126695.141859.21037.# ℹ 128 more rows# ℹ Use `print(n = ...)` to see more rows=========================================================

Additional Usage Examples

# Fetch data for a specific indexo<- get_series("bie_yssk",start_date="2010-01-01")print(o)# Fetch data for multiple indexes using a vector or templateindex_vector<- c("TP_YSSK_A1","TP_YSSK_A2")o<- get_series(index_vector)print(o)# Remove NA values from the data framedf_raw<-o$datadf<- remove_na_safe(df_raw)print(df)# Create a lagged data framedf2<- lag_df(df,list(TP_YSSK_A1=1:3,TP_YSSK_A2=1:6))print(df2)
o<- get_series("bie_yssk" ,start_date="2010-01-01")o# ======================================Rapi_GETPREP=======#     status      : completed# index       : bie_yssk# start_date  : 2010-01-01# end_date    : 2100-01-01# ................... resolved [completed] ..............## ..................................# .........> lines   .............# ..................................# # each line corresponds to a different set of func and data# data can be reached as below>obj$lines$data# # A tibble: 1 × 8# index    source base  comments freq  fnc_str        fnc          data# <chr>    <chr>  <chr> <chr>    <chr> <chr>          <named list> <list>#     1 bie_yssk evds   table " "      null  evds_table_fnc <fn>         <tibble [167 × 7]>#     ..................................# .........> (combined) data ...# ..................................# a combined data frame will be constructed# combined data can be reached as>obj$data# # A tibble: 167 × 7# date       TP_YSSK_A1 TP_YSSK_A2 TP_YSSK_A3 TP_YSSK_A4 TP_YSSK_A5 TP_YSSK_A6# <date>          <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>#     1 2010-01-01       7928       6126       5020       5644      51100      75818# 2 2010-02-01       7619       6030       4911       5521      50088      74168# 3 2010-03-01       7517       5998       4920       5534      49625      73595# 4 2010-04-01       7333       5822       4859       5435      49360      72809# 5 2010-05-01       7136       5510       4922       5266      48108      70942# 6 2010-06-01       6906       5257       4449       5277      47464      69353# 7 2010-07-01       6836       5363       4445       5396      49051      71092# 8 2010-08-01       6758       5291       4411       5281      48407      70148# 9 2010-09-01       6799       5200       4411       5375      50099      71885# 10 2010-10-01       6770       5094       4324       5358      51091      72637# # ℹ 157 more rows# # ℹ Use print(n = ...) to see more rows# ...........................................................## =========================================================

indexes can be given as a vector or a string template

index_vector= c("TP_YSSK_A1" ,"TP_YSSK_A2" )# or as a template it gives same resultindex_template<-"TP_YSSK_A1TP_YSSK_A2"o<- get_series(index_vector )oo<- get_series(index_template )o

Accessing Combined and Lines Data Frames

Once you have retrieved your data using the defined series, you can access the combined data frame and the lines data frame using the following structures:

# Access the combined data framecombined_data<-obj$data# Access the 'lines' data framelines_data<-obj$lines

This structure allows you to easily navigate through the object to access specific data frames.

df_raw<-o$datadf_raw# # A tibble: 287 × 3# date       TP_YSSK_A1 TP_YSSK_A2# <date>          <dbl>      <dbl>#     1 2000-01-01         NA         NA# 2 2000-02-01         NA         NA# 3 2000-03-01         NA         NA# 4 2000-04-01         NA         NA# 5 2000-05-01         NA         NA# 6 2000-06-01         NA         NA# 7 2000-07-01         NA         NA# 8 2000-08-01         NA         NA# 9 2000-09-01         NA         NA# 10 2000-10-01         NA         NA# # ℹ 277 more rows# # ℹ Use `print(n = ...)` to see more rows

remove_na_safe

This function removes rows from both ends of a data frame until it identifies a row where all columns have non-NA values. The process involves two steps:

  1. Trimming from the Beginning: It starts from the beginning and removes rows until it encounters a row with complete data in all columns.

  2. Trimming from the End: After the initial trimming, it proceeds to remove rows from the end of the data frame, eliminating any rows with at least one NA value in any column, until it reaches a row where all columns contain non-NA values.

The process stops when it finds a row where all columns contain non-NA values, and the resulting data frame is returned.

Usage:

# Example data frameexample_data<-data.frame(A= c(1,2,3,NA,5),B= c(NA,2,3,4,5),C= c(1,2,3,4,5))# Remove NA values from both endscleaned_data<- remove_na_safe(example_data)# View the cleaned data frameprint(cleaned_data)

In this example, the function remove_na_safe is applied to the example_data data frame.The resulting cleaned_data will have rows removed from both ends until a row with non-NA values in all columns is reached.

df<- remove_na_safe(df_raw )df# # A tibble: 263 × 3# date       TP_YSSK_A1 TP_YSSK_A2# <date>          <dbl>      <dbl>#     1 2002-01-01       2673       1197# 2 2002-02-01       3235       1262# 3 2002-03-01       3561       1432# 4 2002-04-01       3872       1525# 5 2002-05-01       4124       1642# 6 2002-06-01       4432       1748# 7 2002-07-01       4823       1841# 8 2002-08-01       4903       1732# 9 2002-09-01       5155       1706# 10 2002-10-01       5066       1709# # ℹ 253 more rows# ℹ Use `print(n = ...)` to see more rows

lag_df

Thelag_df function creates additional columns based on a list of column names and lag sequences.This feature is beneficial for scenarios where you need varying lag selectionsfor certain columns, allowing flexibility in specifying different lags fordifferent columns or opting for no lag at all.

Usage Example:

# Example data frameexample_data<-data.frame(a= c(10,20,30,40,50),b= c(100,200,300,400,500))# Applying lag_df function with specified lag sequenceslagged_data<- lag_df(example_data,list(a=1:3,b=1:2))# View the lagged data frameprint(lagged_data)# A tibble: 5 × 7aba_lag_1a_lag_2a_lag_3b_lag_1b_lag_2<dbl><dbl><dbl><dbl><dbl><dbl><dbl>110100NANANANANA22020010NANA100NA3303002010NA200100440400302010300200550500403020400300

In this example, the lag_df function is applied to the example_data data frame withspecified columns (a and b) and corresponding lag sequences (1:3 and 1:6).The resulting lagged_data will have additional columns representing the specified lags.

df2<- lag_df(df ,list(TP_YSSK_A1=1:3 ,TP_YSSK_A2=1:6 ) )df2# # A tibble: 263 × 12# date       TP_YSSK_A1 TP_YSSK_A2 TP_YSSK_A1_lag_1 TP_YSSK_A1_lag_2 TP_YSSK_A1_lag_3 TP_YSSK_A2_lag_1 TP_YSSK_A2_lag_2# <date>          <dbl>      <dbl>            <dbl>            <dbl>            <dbl>            <dbl>            <dbl>#     1 2002-01-01       2673       1197               NA               NA               NA               NA               NA# 2 2002-02-01       3235       1262             2673               NA               NA             1197               NA# 3 2002-03-01       3561       1432             3235             2673               NA             1262             1197# 4 2002-04-01       3872       1525             3561             3235             2673             1432             1262# 5 2002-05-01       4124       1642             3872             3561             3235             1525             1432# 6 2002-06-01       4432       1748             4124             3872             3561             1642             1525# 7 2002-07-01       4823       1841             4432             4124             3872             1748             1642# 8 2002-08-01       4903       1732             4823             4432             4124             1841             1748# 9 2002-09-01       5155       1706             4903             4823             4432             1732             1841# 10 2002-10-01       5066       1709             5155             4903             4823             1706             1732# # ℹ 253 more rows# # ℹ 4 more variables: TP_YSSK_A2_lag_3 <dbl>, TP_YSSK_A2_lag_4 <dbl>, TP_YSSK_A2_lag_5 <dbl>, TP_YSSK_A2_lag_6 <dbl># # ℹ Use `print(n = ...)` to see more rows

get_series function does not require source names for IDs. The function uses hintsto figure out which sources to request from for the index IDs given.

index_template<-"TP_YSSK_A1TP_YSSK_A2UNRATE"o<- get_series(index_template )o

Accessing Individual Data Frames

Once you have retrieved your data using the defined series, individual data framescan be accessed using the following structure:

your_data<-object$lines$data

This structure allows you to navigate through the object to access specific data frames.

>o$lines# # A tibble: 3 × 8#   index        source base   comments      freq  fnc_str         fnc          data#   <chr>        <chr>  <chr>  <chr>         <chr> <chr>           <named list> <list># 1 UNRATE       fred   series fred (series) null  fred_series_fnc <fn>         <tibble [228 × 2]># 2 bie_abreserv evds   table  evds (table)  null  evds_table_fnc  <fn>         <tibble [287 × 6]># 3 TP.AB.B1     evds   series evds (series) null  evds_series_fnc <fn>         <tibble [287 × 2]>>o$lines$data# [[1]]# # A tibble: 228 × 2#    date       UNRATE#    <date>      <dbl>#  1 2005-01-01    5.3#  2 2005-02-01    5.4#  3 2005-03-01    5.2#  4 2005-04-01    5.2#  5 2005-05-01    5.1#  6 2005-06-01    5#  7 2005-07-01    5#  8 2005-08-01    4.9#  9 2005-09-01    5# 10 2005-10-01    5# # ℹ 218 more rows# # ℹ Use `print(n = ...)` to see more rows## [[2]]# # A tibble: 287 × 6#    date       TP_AB_B1 TP_AB_B2 TP_AB_B3 TP_AB_B4 TP_AB_B6#    <date>        <dbl>    <dbl>    <dbl>    <dbl>    <dbl>#  1 2000-01-01    1011    22859.    8943.   23870.   32812.#  2 2000-02-01    1011    22907.    8296.   23918.   32214.#  3 2000-03-01    1011.   22926.    9817.   23937.   33754.#  4 2000-04-01    1011.   22337     8579.   23348.   31926.#  5 2000-05-01    1011.   22950.    8451.   23961.   32412.#  6 2000-06-01    1011.   24547.    9270.   25558.   34827.#  7 2000-07-01    1010.   24477.   10575.   25487    36062.#  8 2000-08-01    1033    24457    10146.   25490    35636.#  9 2000-09-01    1025    24160    10715.   25185    35900.# 10 2000-10-01     988    23593     9970.   24581    34551.# # ℹ 277 more rows# # ℹ Use `print(n = ...)` to see more rows## [[3]]# # A tibble: 287 × 2#    date       TP.AB.B1#    <date>        <dbl>#  1 2000-01-01    1011#  2 2000-02-01    1011#  3 2000-03-01    1011.#  4 2000-04-01    1011.#  5 2000-05-01    1011.#  6 2000-06-01    1011.#  7 2000-07-01    1010.#  8 2000-08-01    1033#  9 2000-09-01    1025# 10 2000-10-01     988# # ℹ 277 more rows# # ℹ Use `print(n = ...)` to see more rows

Excel export

creates excel file including all data frames of the object

# Export data frames to an Excel fileobj<- get_series(index= template_test() )excel(obj,"file_name.xlsx","somefolder")

Getting API Keys

To access data fromEDDS (CBRT) and FRED (FED), users need to obtain API keys by creating accounts on their respective websites.

EDDS (CBRT) API Key

  1. Visit theEDDS (CBRT) API Documentation.
  2. Create an account on theEDDS website if you don't have one.
  3. Follow the documentation to generate your API key.

FRED (FED) API Key

  1. Go to theFRED (FED) API Key Documentation.
  2. Create an account on the FRED website if you haven't done so already.
  3. Follow the documentation to obtain your FRED API key.

Make sure to securely store your API keys and never expose them in public repositories.

Contributing

If you find any issues or have suggestions for improvement, feel free to open an issue or submit a pull request on GitHub.

About

Rapi package is an interface to make requests from data providers. Current version is able to connect to APIs of EDDS of CBRT (Central Bank of the Republic of Türkiye) and FRED API of FED (Federal Reserve Bank).

Topics

Resources

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp