Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

CTR模型代码和学习笔记总结

NotificationsYou must be signed in to change notification settings

DSXiangLi/CTR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The code is not rigorously tested, if you find a bug, welcome PR ^_^ ~

  • Run: python main.py --model DeepFM --step train --dataset census --clear_model 1
  • Requirement: tensorflow 1.15
  1. 已完成模型列表[支持数据集]
  • FM [census]
  • FFM [census]
  • Embedding+MLP [census]
  • wide & Deep [census]
  • FNN [census]
  • PNN [census]
  • DeepFM [census & frappe]
  • AFM [census & frappe]
  • NFM [census & frappe]
  • Deep Crossing [census]
  • Deep & Cross [census & frappe]
  • xDeepFM [census & frappe]
  • FiBiNET [census & frappe]
  • DIN [amazon]
  1. 数据集当前支持census, frappe数据集,详情见data目录,training parameter和preprocess与数据集绑定

  2. 参考论文列表

  • [GBDT+LR] Practical Lessons from Predicting Clicks on Ads at Facebook
  • [FM] S. Rendle, Factorization machines
  • [FM Model] Fast Context-aware Recommendations with Factorization Machines
  • [FFM] Yuchin Juan,Yong Zhuang,Wei-Sheng Chin,Field-aware Factorization Machines for CTR Prediction
  • [NCF] Neural Collaborative Filtering
  • [Wide&Deep] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems
  • [FNN] Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data - - A case study on user response
  • [PNN] Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction
  • [DeepFM] Huifeng Guo et all. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
  • [AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks
  • [NFM] Neural Factorization Machines for Sparse Predictive Analytics
  • [DCN] Deep & Cross Network for Ad Click Predictions
  • [Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features
  • [xDeepFM] xDeepFM- Combining Explicit and Implicit Feature Interactions for Recommender Systems
  • [FiBiNET]- Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
  • [AutoInt]- Automatic Feature Interaction Learning via Self-Attentive Neural Networks
  • [DIN] Deep Interest Network for Click-Through Rate Prediction.
  • [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction
  1. 总结博客

[8]ページ先頭

©2009-2025 Movatter.jp