- Notifications
You must be signed in to change notification settings - Fork13
Author: Tong Zhao (tzhao2@nd.edu). ICML 2022. Learning from Counterfactual Links for Link Prediction
License
DM2-ND/CFLP
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
This repository contains the source code for the ICML 2022 paper:
Learning from Counterfactual Links for Link Prediction
byTong Zhao (tzhao2@nd.edu),Gang Liu,Daheng Wang,Wenhao Yu, andMeng Jiang.
This code package was developed and tested with Python 3.8.5, PyTorch 1.6.0, and PyG 1.6.1. All dependencies specified in therequirements.txt file. The packages can be installed by
pip install -r requirements.txtThe step of finding all the counterfactual links can be slow for the first run, please adjust the--n_workers parameter according to available processes if you are trying out different settings. The cached files for the counterfactual links that were used in our experiments can be foundhere, please download and put them underdata/T_files/ before reproducing our experiments.
Following are the commands to reproduce our experiment results on different datasets.
# Corapython main.py --dataset cora --metric auc --alpha 1 --beta 1 --gamma 30 --lr 0.1 --embraw mvgrl --t kcore --neg_rate 50 --jk_mode mean --trail 20# CiteSeerpython main.py --dataset citeseer --metric auc --alpha 1 --beta 1 --gamma 30 --lr=0.1 --embraw dgi --t kcore --neg_rate 50 --jk_mode mean --trail 20# PubMedpython main.py --dataset pubmed --metric auc --alpha 1 --beta 1 --gamma 30 --lr 0.1 --embraw mvgrl --t kcore --neg_rate 40 --jk_mode mean --batch_size 12000 --epochs 200 --patience 50 --trail 20# Facebookpython main.py --dataset facebook --metric hits@20 --alpha 1e-3 --beta 1e-3 --gamma 30 --lr 0.005 --embraw mvgrl --t louvain --neg_rate 1 --jk_mode mean --trail 20# OGBL-ddipython main.py --dataset ogbl-ddi --metric hits@20 --alpha 1e-3 --beta 1e-3 --gamma 10 --lr 0.01 --embraw dgi --t louvain --neg_rate 1 --jk_mode mean --epochs=200 --epochs_ft=200 --patience=50 --trail 20If you find this repository useful in your research, please cite our paper:
@inproceedings{zhao2022learning,title={Learning from Counterfactual Links for Link Prediction},author={Zhao, Tong and Liu, Gang and Wang, Daheng and Yu, Wenhao and Jiang, Meng},booktitle={International Conference on Machine Learning},pages={26911--26926},year={2022},organization={PMLR}}
About
Author: Tong Zhao (tzhao2@nd.edu). ICML 2022. Learning from Counterfactual Links for Link Prediction
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Uh oh!
There was an error while loading.Please reload this page.