Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

This repository provides the code for Japanese NLI model, a fine-tuned masked language model.

License

NotificationsYou must be signed in to change notification settings

CyberAgentAILab/japanese-nli-model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

This repository provides the code forJapanese NLI model, a fine-tuned masked language model.

Performance

The model showed performance comparable with those reported inJGLUE [Kurihara et al. 2022] andJSICK [Yanaka and Mineshima 2022] papers, in terms of overall accuracy:

ModelJGLUE-JNLI valid [%]JSICK test [%]
[Kurihara et al. 2022]91.9N/A
[Yanaka and Mineshima 2022]N/A89.1
ours using both JNLI and JSICK90.989.0

References

Appendix: Hyperparameters

random seeds

Yes, we tested only a single run :(

torch.manual_seed(0)random.seed(0)np.random.seed(0)

dataset order

  1. JSICK
  2. JGLUE

labels

We converted string label into integer using the following mapping:

label2int= {"contradiction":0,"entailment":1,"neutral":2}

CrossEncoder

We mimickedbatch_size=128 using gradient accumulation32 * 4 = 128.

batch_size=32,shuffle=True,epochs=3,accumulation_steps=4,optimizer_params={'lr':5e-5},warmup_steps=math.ceil(0.1*len(data)),

[8]ページ先頭

©2009-2025 Movatter.jp