Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

C# implementation of neural networks library. Contains basic types of layers (dense, convolution, pooling, flatten). Supports single CPU, Multi-CPU and GPU tensor operations (using ManagedCUDA). This project is no longer developed, since I ported it to C++ and greatly expanded (Neuro_).

License

NotificationsYou must be signed in to change notification settings

Cr33zz/Neuro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

87 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

C# implementation of neural networks library. Contains basic types of layers (dense, convolution, pooling, flatten). Supports single CPU, Multi-CPU and GPU tensor operations (using CUDAfy).

Sample sequential network

var net = new NeuralNetwork("deep_dense_test");var model = new Sequential();model.AddLayer(new Dense(inputs, 5, Activation.Linear));model.AddLayer(new Dense(net.LastLayer, 4, Activation.Linear));model.AddLayer(new Dense(net.LastLayer, inputs, Activation.Linear));net.Model = model;net.Optimize(new SGD(0.02f), Loss.MeanSquareError);List<Data> tData = new List<Data>();for (int i = 0; i < 100; ++i){    var input = new Tensor(net.Layer(0).InputShape);    input.FillWithRand();    tData.Add(new Data() { Input = input, Output = input.Mul(1.7f) });}net.Fit(tData, 10, 50, null, 2, Track.TrainError);

Sample flow network (streams)

var net = new NeuralNetwork("flow_test");var mainInput = new Dense(2, 2, Activation.Linear) { Name = "main_input" };var auxInput = new Input(new Shape(1, 2)) { Name = "aux_input" };var concat = new Concatenate(new []{ mainInput, auxInput }) { Name = "concat" };net.Model = new Flow(new[] { mainInput, auxInput }, new[] { concat });net.Optimize(new SGD(0.05f), Loss.MeanSquareError);var inputs = new[] { new Tensor(new float[] { 0, 1 }, new Shape(1, 2)),                     new Tensor(new float[] { 1, 2 }, new Shape(1, 2)) };var output = new Tensor(new float[] { 1, 2, 1, 2 }, new Shape(1, 4));var trainingData = new List<Data> { new Data(inputs, new []{output}) };net.Fit(trainingData, 1, 50, null, 0, Track.Nothing, false);

Library can generate basic graphs to track error (train data, test data).

Prerequisites

For GPU computation CUDA 10.1 and CudNN 7.6.1.34 are required. Both can be downloaded from NVidia website:

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

About

C# implementation of neural networks library. Contains basic types of layers (dense, convolution, pooling, flatten). Supports single CPU, Multi-CPU and GPU tensor operations (using ManagedCUDA). This project is no longer developed, since I ported it to C++ and greatly expanded (Neuro_).

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp