Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Utilities for field trial analysis.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

AparicioJohan/agriutilities

Repository files navigation

CRAN statusLifecycle: stableCRAN RStudio mirror downloadsCRAN RStudio mirror downloads

agriutilities is anR package designed to make the analysis of fieldtrials easier and more accessible for everyone working in plantbreeding. It provides a simple and intuitive interface for conductingsingle andmulti-environmental trial analysis, with minimalcoding required. Whether you’re a beginner or an experienced user,agriutilities will help you quickly and easily carry out complexanalyses with confidence. With built-in functions for fitting LinearMixed Models (LMM), agriutilities is the ideal choice for anyone whowants to save time and focus on interpreting their results.

Installation

From CRAN

install.packages("agriutilities")

From GitHub

You can install the development version of agriutilities fromGitHub with:

remotes::install_github("AparicioJohan/agriutilities")

Automatic Data Analysis Pipeline

This is a basic example which shows you how to use some of the functionsof the package.

Identify the Experimental Design

The functioncheck_design_met helps us to check the quality of thedata and also to identify the experimental design of the trials. Thisworks as a quality check or quality control before we fit any model.

library(agriutilities)library(agridat)data(besag.met)dat<-besag.metresults<- check_design_met(data=dat,genotype="gen",trial="county",traits="yield",rep="rep",block="block",col="col",row="row")
plot(results,type="connectivity")

plot(results,type="missing")

Inspecting the output.

print(results)---------------------------------------------------------------------SummaryTraitsbyTrial:---------------------------------------------------------------------# A tibble: 6 × 11countytraitsMinMeanMedianMaxSDCVnn_missmiss_perc<fct><chr><dbl><dbl><dbl><dbl><dbl><dbl><int><int><dbl>1C1yield87.9149.151.200.17.70.11919860.03032C2yield24.456.152.1125.18.40.32819860.03033C3yield28.287.989.2137.19.70.22519860.03034C4yield103.145.143.190.17.10.11819860.03035C5yield66.9115.116.152.16.40.14219860.03036C6yield29.287.687.8148.26.60.30419860.0303---------------------------------------------------------------------ExperimentalDesignDetected:---------------------------------------------------------------------countyexp_design1C1row_col2C2row_col3C3row_col4C4row_col5C5row_col6C6row_col---------------------------------------------------------------------SummaryExperimentalDesign:---------------------------------------------------------------------# A tibble: 6 × 9countynn_genn_repn_blockn_coln_rownum_of_repsnum_of_gen<fct><int><int><int><int><int><int><fct><fct>1C1198643811183_963_12C2198643811183_963_13C3198643811183_963_14C4198643811183_963_15C5198643811183_963_16C6198643811183_963_1---------------------------------------------------------------------ConnectivityMatrix:---------------------------------------------------------------------C1C2C3C4C5C6C1646464646464C2646464646464C3646464646464C4646464646464C5646464646464C6646464646464---------------------------------------------------------------------FiltersApplied:---------------------------------------------------------------------Listof1$yield:Listof4..$missing_50%: chr(0)..$no_variation: chr(0)..$row_col_dup: chr(0)..$trials_to_remove: chr(0)

Single Trial Analysis (STA)

The results of the previous function are used insingle_trial_analysis() to fit single trial models. This function canfit, Completely Randomized Designs (CRD), Randomized Complete BlockDesigns (RCBD), Resolvable Incomplete Block Designs (res-IBD),Non-Resolvable Row-Column Designs (Row-Col) and ResolvableRow-Column Designs (res-Row-Col).

NOTE: It fits models based on the randomization detected.

obj<- single_trial_analysis(results,progress=FALSE)

Inspecting the output.

print(obj)---------------------------------------------------------------------SummaryFittedModels:---------------------------------------------------------------------traittrialheritabilityCVVarGenVarErrdesign<char><char><num><num><num><num><char>1:yieldC10.706.37005485.2808692.70982row_col2:yieldC20.3916.98723526.87283105.50494row_col3:yieldC30.6412.36684382.84379118.86865row_col4:yieldC40.418.17979435.75059136.21686row_col5:yieldC50.807.042116104.4407766.96454row_col6:yieldC60.4916.58397272.16813206.54020row_col---------------------------------------------------------------------OutliersRemoved:---------------------------------------------------------------------Null data.table (0rowsand0cols)---------------------------------------------------------------------FirstPredictedValuesandStandard Errors (BLUEs/BLUPs):---------------------------------------------------------------------traitgenotypetrialBLUEsseBLUEsBLUPsseBLUPswt<char><fctr><fctr><num><num><num><num><num>1:yieldG01C1142.93166.380244144.51515.4214810.024565492:yieldG02C1156.77656.277083155.05235.3674250.025379573:yieldG03C1126.56546.402526133.17665.4443490.024394804:yieldG04C1155.77906.391590154.24355.4400700.024478365:yieldG05C1163.98566.443261160.76205.4443140.024087326:yieldG06C1129.50926.400364134.74045.4215430.02441129
plot(obj,horizontal=TRUE,nudge_y_h2=0.12)

plot(obj,type="correlation")

The returning object is a set of lists with trial summary, BLUEs, BLUPs,heritability, variance components, potential extreme observations,residuals, the models fitted and the data used.

Two-Stage Analysis (MET)

The results of the previous function are used inmet_analysis() to fitmulti-environmental trial models.

met_results<- met_analysis(obj,vcov="fa2",progress=FALSE)OnlineLicensecheckedoutThuOct1621:37:042025

Inspecting the output.

print(met_results)---------------------------------------------------------------------Trial Effects (BLUEs):---------------------------------------------------------------------traittrialpredicted.valuestd.errorstatus1yieldC1149.590141.369766Estimable2yieldC267.205451.137972Estimable3yieldC390.799581.441812Estimable4yieldC4148.126231.172130Estimable5yieldC5122.401951.440843Estimable6yieldC688.354371.530165Estimable---------------------------------------------------------------------Heritability:---------------------------------------------------------------------traith21yield0.8261367---------------------------------------------------------------------FirstOverallPredictedValuesandStandard Errors (BLUPs):---------------------------------------------------------------------traitgenotypepredicted.valuestd.errorstatus1yieldG01110.84292.536428Estimable2yieldG02111.38362.548777Estimable3yieldG03102.66122.551662Estimable4yieldG04115.87752.546016Estimable5yieldG05121.06402.558195Estimable6yieldG06108.94982.570048Estimable---------------------------------------------------------------------Variance-CovarianceMatrix:---------------------------------------------------------------------Correlation Matrix ('fa2'):yieldC1C2C3C4C5C6C11.000.640.710.860.950.42C20.641.000.580.860.530.70C30.710.581.000.700.710.39C40.860.860.701.000.830.58C50.950.530.710.831.000.34C60.420.700.390.580.341.00Covariance Matrix ('fa2'):yieldC1C2C3C4C5C6C178.9329.3555.7838.0585.2030.76C229.3526.4226.6121.9327.8129.68C355.7826.6178.6530.9763.2728.46C438.0521.9330.9724.5541.4923.89C585.2027.8163.2741.49102.3028.28C630.7629.6828.4623.8928.2867.99---------------------------------------------------------------------FirstStabilityCoefficients:---------------------------------------------------------------------traitgenotypesuperioritystaticwrickepredicted.value1yieldG5722.6417032.9255615.48498792.633622yieldG2917.0332233.668555.02378399.678433yieldG3417.0220333.060408.545979100.066744yieldG5916.7240234.064165.596864100.145115yieldG3115.7702731.3693210.740548102.042496yieldG1015.5921932.0399011.767180102.64704

Exploring Factor Analytic in MET analysis.

pvals<-met_results$trial_effectsmodel<-met_results$met_models$yieldfa_objt<- fa_summary(model=model,trial="trial",genotype="genotype",BLUEs_trial=pvals,k_biplot=8,size_label_var=4,filter_score=1)
fa_objt$plots$loadings_c

fa_objt$plots$biplot

For more information and to learn more about what is described here youmay find useful the following sources: Isik, Holland, and Maltecca(2017); Rodriguez-Alvarez et al. (2018).

Code of Conduct

Please note that the agriutilities project is released with aContributor Code ofConduct.By contributing to this project, you agree to abide by its terms.

References

Isik, Fikret, James Holland, and Christian Maltecca. 2017.Genetic DataAnalysis for Plant and Animal Breeding. Vol. 400. Springer.

Rodriguez-Alvarez, Maria Xose, Martin P Boer, Fred A van Eeuwijk, andPaul HC Eilers. 2018. “Correcting for Spatial Heterogeneity in PlantBreeding Experiments with p-Splines.”Spatial Statistics 23: 52–71.

About

Utilities for field trial analysis.

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors2

  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp