- Notifications
You must be signed in to change notification settings - Fork0
fitODBOD : R package to fit Overdispersed Binomial Outcome Data
License
Unknown, MIT licenses found
Licenses found
Amalan-ConStat/fitODBOD
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
## Installing the package from GitHubdevtools::install_github("Amalan-ConStat/fitODBOD")## Installing the package from CRANinstall.packages("fitODBOD")
The previous version of “fitODBOD”, version 1.4.1 is available in thegithub repository asR-fitODBOD.
- BOD (Binomial Outcome Data)
- Over Dispersion
- Under Dispersion
- FBMD (Family of Binomial Mixture Distributions)
- ABD (Alternate Binomial Distributions)
- PMF (Probability Mass Function)
- CPMF (Cumulative Probability Mass Function)
You can understand BMD & ABD with PMF & CPMF. Further, BOD can bemodeled using these Distributions
| Alternate Binomial Distributions | Binomial Mixture Distributions |
|---|---|
| 1.Additive Binomial Distribution | 1.Uniform Binomial Distribution |
| 2.Beta-Correlated Binomial Distribution | 2.Triangular Binomial Distribution |
| 3.COM Poisson Binomial Distribution | 3.Beta-Binomial Distribution |
| 4.Correlated Binomial Distribution | 4.Kumaraswamy Binomial Distribution |
| 5.Multiplicative Binomial Distribution | 5.Gaussian Hypergeometric Generalized Beta-Binomial Distribution |
| 6.Lovinson Multiplicative Binomial Distribution | 6.McDonald Generalized Beta-Binomial Distribution |
| 7.Gamma Binomial Distribution | |
| 8.Grassia II Binomial Distribution |
To demonstrate the process the Alcohol Consumption Data, which is themost commonly used data-set by the researchers to explainOver-dispersion will be taken {lemmens1988}. In this data-set, thenumber of alcohol consumption days in two reference weeks is separatelyself-reported by a randomly selected sample of
An Rshiny application and package namedfitODBODRshinyis available to fit a few selected Binomial Outcome data throughBinomial Mixture and Alternate Binomial distributions.
The Alcohol consumption data is already in the necessary format to applysteps
library("fitODBOD"); library("flextable",quietly=TRUE)## Loading packages#> Hello, This is Amalan. For more details refer --> https://amalan-constat.github.io/fitODBOD/index.html
print(Alcohol_data)## print the alcohol consumption data set#> Days week1 week2#> 1 0 47 42#> 2 1 54 47#> 3 2 43 54#> 4 3 40 40#> 5 4 40 49#> 6 5 41 40#> 7 6 39 43#> 8 7 95 84
sum(Alcohol_data$week1)## No of respondents or N#> [1] 399
Alcohol_data$Days## Binomial random variables or x#> [1] 0 1 2 3 4 5 6 7
Suppose your data-set is not a frequency table as shown in the followingdata-set calleddatapoints. Then the functionBODextract can be usedto prepare the appropriate format as follows.
datapoints<- sample(0:7,340,replace=TRUE)## creating a set of raw BODhead(datapoints)## first few observations of datapoints dataset#> [1] 3 5 2 5 4 7
## extracting and printing BOD in a usable way for the packagenew_data<- BODextract(datapoints)matrix(c(new_data$RV,new_data$Freq),ncol=2,byrow=FALSE)#> [,1] [,2]#> [1,] 0 40#> [2,] 1 46#> [3,] 2 47#> [4,] 3 36#> [5,] 4 42#> [6,] 5 38#> [7,] 6 48#> [8,] 7 43
As in the second step we test whether the Alcohol Consumption datafollows the Binomial distribution based on the hypothesis given below:
Null Hypothesis : The data follows Binomial Distribution.
Alternate Hypothesis : The data does not follow Binomial Distribution.
Alcohol Consumption data consists of frequency information for two weeksbut only the first week is considered for computation. By doing so theresearcher can verify if the results acquired from the functions aresimilar to the results acquired from previous researchers work.
BinFreq<- fitBin(x=Alcohol_data$Days,obs.fre=Alcohol_data$week1)#> Chi-squared approximation may be doubtful because expected frequency is less than 5
print(BinFreq)#> Call:#> fitBin(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1)#>#> Chi-squared test for Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 1.59 13.41 48.3 96.68 116.11 83.66 33.49 5.75#>#> estimated probability value : 0.5456498#>#> X-squared : 2911.434 ,df : 6 ,p-value : 0
Looking at the p-value it is clear that null hypothesis is rejected at
## Actual variance of observed frequenciesvar(rep(Alcohol_data$Days,times=Alcohol_data$week1))#> [1] 6.253788
## Calculated variance for frequencies of fitted Binomial distributionvar(rep(BinFreq$bin.ran.var,times= fitted(BinFreq)))#> [1] 1.696035
The variance of observed frequencies and the variance of fittingfrequencies are 6.2537877 and 1.6960355 respectively, which indicatesOver-dispersion.
Since the Over-dispersion exists in the data now it is necessary to fitthe Binomial Mixture distributions Triangular Binomial, Beta-Binomial,Kumaraswamy Binomial (omitted because this is time consuming), GammaBinomial, Grassia II Binomial, GHGBB and McGBB using the package, andselect the best-fitting distribution using Negative Log likelihoodvalue, p-value and by comparing observed and expected frequencies.Modelling these distributions are given in the next sub-sections.
Maximizing the log likelihood value or in our case minimizing thenegative log likelihood is used in theEstMLExxx functions. Theestimation of themode parameter can be done by using theEstMLETriBin function, and then the estimated value has to be appliedtofitTriBin function to check whether the data fit the TriangularBinomial distribution.
## estimating the modemodeTB<- EstMLETriBin(x=Alcohol_data$Days,freq=Alcohol_data$week1) coef(modeTB)## printing the estimated mode#> mode#> 0.944444
## printing the Negative log likelihood value which is minimizedNegLLTriBin(x=Alcohol_data$Days,freq=Alcohol_data$week1,mode=modeTB$mode)#> [1] 880.6167
To fit the Triangular Binomial distribution for estimated mode parameterthe following hypothesis is used
Null Hypothesis : The data follows Triangular Binomial Distribution.
Alternate Hypothesis : The data does not follow Triangular BinomialDistribution.
## fitting the Triangular Binomial Distribution for the estimated mode valuefTB<- fitTriBin(x=Alcohol_data$Days,obs.freq=Alcohol_data$week1,mode=modeTB$mode)print(fTB)#> Call:#> fitTriBin(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1,#> mode = modeTB$mode)#>#> Chi-squared test for Triangular Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 11.74 23.47 35.21 46.94 58.66 70.2 79.57 73.21#>#> estimated Mode value: 0.944444#>#> X-squared : 193.6159 ,df : 6 ,p-value : 0#>#> over dispersion : 0.2308269
AIC(fTB)#> [1] 1763.233
var(rep(fTB$bin.ran.var,times= fitted(fTB)))#> [1] 3.786005
Since thep-value is 0 which is less thanOver-dispersion is0.2308269. Therefore, it is necessary to fit a better flexibledistribution than the Triangular Binomial distribution.
To estimate the two shape parameters of the Beta-Binomial distributionMethods of Moments or Maximum Likelihood estimation can be used. Usingthe functionEstMLEBetaBin(wrapper function ofmle2 from packagebbmle) the Negative Log likelihood value will be minimized. In orderto estimate the shape parametersa andb, initial shape parametervalues have to be given by the user to this function. These initialvalues have to be in the domain of the shape parameters. Below given isthe pair of estimates for initial values wherea=0.1 andb=0.1.
## estimating the shape parameters a, bestimate<- EstMLEBetaBin(x=Alcohol_data$Days,freq=Alcohol_data$week1,a=0.1,b=0.1)estimate@min## extracting the minimized Negative log likelihood value#> [1] 813.4571
## extracting the estimated shape parameter a, ba1<-bbmle::coef(estimate)[1] ;b1<-bbmle::coef(estimate)[2] print(c(a1,b1))## printing the estimated shape parameters#> a b#> 0.7229420 0.5808483
To fit the Beta-Binomial distribution for estimated (Maximum LikelihoodEstimation method) shape parameters the following hypothesis is used
Null Hypothesis : The data follows Beta-Binomial Distribution by theMaximum Likelihood Estimates.
Alternate Hypothesis: The data does not follow Beta-BinomialDistribution by the Maximum Likelihood Estimates.
## fitting Beta Binomial Distribution for estimated shape parametersfBB1<- fitBetaBin(x=Alcohol_data$Days,obs.fre=Alcohol_data$week1,a=a1,b=b1)print(fBB1)#> Call:#> fitBetaBin(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1,#> a = a1, b = b1)#>#> Chi-squared test for Beta-Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 54.62 42 38.9 38.54 40.07 44 53.09 87.78#>#> estimated a parameter : 0.722942 ,estimated b parameter : 0.5808483#>#> X-squared : 9.5171 ,df : 5 ,p-value : 0.0901#>#> over dispersion : 0.4340673
AIC(fBB1)#> [1] 1630.914
var(rep(fBB1$bin.ran.var,times= fitted(fBB1)))#> [1] 6.24275
Thep-value of 0.0901Over-dispersion parameter is0.4340673.
FunctionEstMGFBetaBin is used as below to estimate shape parametersa andb using Methods of Moments.
## estimating the shape parameter a, bestimate<- EstMGFBetaBin(Alcohol_data$Days,Alcohol_data$week1)print(c(estimate$a,estimate$b))## printing the estimated parameters a, b#> [1] 0.7161628 0.5963324
## finding the minimized negative log likelihood valueNegLLBetaBin(x=Alcohol_data$Days,freq=Alcohol_data$week1,a=estimate$a,b=estimate$b)#> [1] 813.5872
To fit the Beta-Binomial distribution for estimated (Method of Moments)shape parameters the following hypothesis is used
Null Hypothesis : The data follows Beta-Binomial Distribution by theMethod of Moments.
Alternate Hypothesis: The data does not follow Beta-BinomialDistribution by the Method of Moments.
## fitting Beta-Binomial Distribution to estimated shape parametersfBB2<- fitBetaBin(x=Alcohol_data$Days,obs.fre=Alcohol_data$week1,a=estimate$a,b=estimate$b)print(fBB2)#> Call:#> fitBetaBin(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1,#> a = estimate$a, b = estimate$b)#>#> Chi-squared test for Beta-Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 56.6 43.01 39.57 38.97 40.27 43.89 52.39 84.29#>#> estimated a parameter : 0.7161628 ,estimated b parameter : 0.5963324#>#> X-squared : 9.7362 ,df : 5 ,p-value : 0.0831#>#> over dispersion : 0.4324333
AIC(fBB2)#> [1] 1631.174
var(rep(fBB2$bin.ran.var,times= fitted(fBB2)))#> [1] 6.273084
Results from Method of Moments to estimate the parameters have led to ap-value of 0.0831 which is greater thanOver-dispersion of 0.4324333.
The shape parametersc andl are estimated and fitted below. Supposethe selected input parameters arec=10.1 andl=5.1.
## estimating the shape parametersestimate<- EstMLEGammaBin(x=Alcohol_data$Days,freq=Alcohol_data$week1,c=10.1,l=5.1)estimate@min## extracting the minimized negative log likelihood value#> [1] 814.0045
## extracting the shape parameter c and lc1<-bbmle::coef(estimate)[1] ;l1<-bbmle::coef(estimate)[2] print(c(c1,l1))## print shape parameters#> c l#> 0.6036061 0.6030777
To fit the Gamma Binomial distribution for estimated shape parametersthe following hypothesis is used
Null Hypothesis : The data follows Gamma Binomial Distribution.
Alternate Hypothesis : The data does not follow Gamma BinomialDistribution.
## fitting Gamma Binomial Distribution to estimated shape parametersfGB<- fitGammaBin(x=Alcohol_data$Days,obs.fre=Alcohol_data$week1,c=c1,l=l1)print(fGB)#> Call:#> fitGammaBin(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1,#> c = c1, l = l1)#>#> Chi-squared test for Gamma Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 54.59 41.39 38.7 38.71 40.54 44.69 53.79 86.58#>#> estimated c parameter : 0.6036061 ,estimated l parameter : 0.6030777#>#> X-squared : 10.6152 ,df : 5 ,p-value : 0.0596#>#> over dispersion : 0.4308113
AIC(fGB)#> [1] 1632.009
var(rep(fGB$bin.ran.var,times= fitted(fGB)))#> [1] 6.228652
The null hypothesis is not rejected atp-value= 0.0596) for the estimated parametersOver-dispersion of 0.4308113.
The shape parametersa andb are estimated and fitted below usingtheEstMLEGammaBin function. Suppose the selected input parameters area=1.1 andb=5.1.
## estimating the shape parametersestimate<- EstMLEGrassiaIIBin(x=Alcohol_data$Days,freq=Alcohol_data$week1,a=1.1,b=5.1)estimate@min## extracting the minimized negative log likelihood value#> [1] 813.0395
# extracting the shape parameter a and ba1<-bbmle::coef(estimate)[1] ;b1<-bbmle::coef(estimate)[2] print(c(a1,b1))#print shape parameters#> a b#> 0.7285039 2.0251513
To fit the Grassia II Binomial distribution for estimated shapeparameters the following hypothesis is used
Null Hypothesis : The data follows Grassia II Binomial Distribution.
Alternate Hypothesis : The data does not follow Grassia II BinomialDistribution.
#fitting Grassia II Binomial Distribution to estimated shape parametersfGB2<- fitGrassiaIIBin(x=Alcohol_data$Days,obs.fre=Alcohol_data$week1,a=a1,b=b1)print(fGB2)#> Call:#> fitGrassiaIIBin(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1,#> a = a1, b = b1)#>#> Chi-squared test for Grassia II Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 55.02 42.36 39.08 38.51 39.78 43.39 52.13 88.74#>#> estimated a parameter : 0.7285039 ,estimated b parameter : 2.025151#>#> X-squared : 8.6999 ,df : 5 ,p-value : 0.1216#>#> over dispersion : 0.259004
AIC(fGB2)#> [1] 1630.079
var(rep(fGB2$bin.ran.var,times= fitted(fGB2)))#> [1] 6.299827
The null hypothesis is not rejected atp-value= 0.1216) for the estimated parametersOver-dispersion 0.259004.
Now we estimate the shape parameters and fit the GHGBB distribution forthe first set of randomly selected initial input shape parameters ofa=10.1,b=1.1 andc=5.
#estimating the shape parametersestimate<- EstMLEGHGBB(x=Alcohol_data$Days,freq=Alcohol_data$week1,a=10.1,b=1.1,c=5)estimate@min#extracting the minimized negative log likelihood value#> [1] 809.2767
#extracting the shape parameter a, b and ca1<-bbmle::coef(estimate)[1] ;b1<-bbmle::coef(estimate)[2] ;c1<-bbmle::coef(estimate)[3] print(c(a1,b1,c1))#printing the shape parameters#> a b c#> 1.3506835 0.3245420 0.7005209
To fit the GHGBB distribution for estimated shape parameters thefollowing hypothesis is used.
Null Hypothesis : The data follows Gaussian Hypergeometric GeneralizedBeta-Binomial Distribution.
Alternate Hypothesis : The data does not follow Gaussian HypergeometricGeneralized Beta-Binomial Distribution.
#fitting GHGBB distribution for estimated shape parametersfGG<- fitGHGBB(Alcohol_data$Days,Alcohol_data$week1,a1,b1,c1)print(fGG)#> Call:#> fitGHGBB(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1,#> a = a1, b = b1, c = c1)#>#> Chi-squared test for Gaussian Hypergeometric Generalized Beta-Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 47.88 50.14 46.52 42.08 38.58 37.32 41.78 94.71#>#> estimated a parameter : 1.350683 ,estimated b parameter : 0.324542 ,#>#> estimated c parameter : 0.7005209#>#> X-squared : 1.2835 ,df : 4 ,p-value : 0.8642#>#> over dispersion : 0.4324875
AIC(fGG)#> [1] 1624.553
var(rep(fGG$bin.ran.var,times= fitted(fGG)))#> [1] 6.249335
The null hypothesis is not rejected atp-value= 0.8642). The estimated shape parameters areOver-dispersionof 0.4324875.
Given below is the results generated for the randomly selected initialinput parameters wherea=1.1,b=5 andc=10.
#estimating the shape parametersestimate<- EstMLEMcGBB(x=Alcohol_data$Days,freq=Alcohol_data$week1,a=1.1,b=5,c=10)estimate@min#extracting the negative log likelihood value which is minimized#> [1] 809.7134
#extracting the shape parameter a, b and ca1<-bbmle::coef(estimate)[1] ;b1<-bbmle::coef(estimate)[2] ;c1<-bbmle::coef(estimate)[3] print(c(a1,b1,c1))#printing the shape parameters#> a b c#> 0.04099005 0.21082788 21.67349031
To fit the McGBB distribution for estimated shape parameters thefollowing hypothesis is used
Null Hypothesis : The data follows McDonald Generalized Beta-BinomialDistribution.
Alternate Hypothesis : The data does not follow McDonald GeneralizedBeta-Binomial Distribution.
#fitting the MCGBB distribution for estimated shape parametersfMB<- fitMcGBB(x=Alcohol_data$Days,obs.fre=Alcohol_data$week1,a=a1,b=b1,c=c1)print(fMB)#> Call:#> fitMcGBB(x = Alcohol_data$Days, obs.freq = Alcohol_data$week1,#> a = a1, b = b1, c = c1)#>#> Chi-squared test for Mc-Donald Generalized Beta-Binomial Distribution#>#> Observed Frequency : 47 54 43 40 40 41 39 95#>#> expected Frequency : 51.37 45.63 43.09 41.5 40.42 39.97 42.11 94.91#>#> estimated a parameter : 0.04099005 ,estimated b parameter : 0.2108279 ,#>#> estimated c parameter : 21.67349#>#> X-squared : 2.2222 ,df : 4 ,p-value : 0.695#>#> over dispersion : 0.4359023
AIC(fMB)#> [1] 1625.427
var(rep(fMB$bin.ran.var,times= fitted(fMB)))#> [1] 6.288273
The null hypothesis is not rejected atp-value= 0.695Over-dispersion of 0.4359023.
Below table presents the expected frequencies, p-values, Negative LogLikelihood values, AIC values, Variance and Over-dispersion of theBinomial Mixture distributions obtained above for the AlcoholConsumption data.
BMD_Data<-tibble::tibble(w=BinFreq$bin.ran.var,x=BinFreq$obs.freq,y=fitted(BinFreq),z=fitted(fTB),a=fitted(fBB1),a1=fitted(fBB2),c=fitted(fGG),d=fitted(fMB),e=fitted(fGB),f=fitted(fGB2))names(BMD_Data)<- c("Bin_RV","Actual_Freq","EstFreq_BinD","EstFreq_TriBinD","EstFreq_BetaBinD(MLE)","EstFreq_BetaBinD(MGF)","EstFreq_GHGBBD","EstFreq_McGBBD","EstFreq_GammaBinD","EstFreq_GrassiaIIBinD")BMD_Total<-colSums(BMD_Data[,-1])BMD_Variance<-c(var(rep(BinFreq$bin.ran.var,times=BinFreq$obs.freq)), var(rep(BinFreq$bin.ran.var,times=BinFreq$exp.freq)), var(rep(BinFreq$bin.ran.var,times=fTB$exp.freq)), var(rep(BinFreq$bin.ran.var,times=fBB1$exp.freq)), var(rep(BinFreq$bin.ran.var,times=fBB2$exp.freq)), var(rep(BinFreq$bin.ran.var,times=fGG$exp.freq)), var(rep(BinFreq$bin.ran.var,times=fMB$exp.freq)), var(rep(BinFreq$bin.ran.var,times=fGB$exp.freq)), var(rep(BinFreq$bin.ran.var,times=fGB2$exp.freq)) )BMD_Variance<-round(BMD_Variance,4)BMD_p_value<-c(BinFreq$p.value,fTB$p.value,fBB1$p.value,fBB2$p.value,fGG$p.value,fMB$p.value,fGB$p.value,fGB2$p.value)BMD_NegLL<-c(fTB$NegLL,fBB1$NegLL,fBB2$NegLL,fGG$NegLL,fMB$NegLL,fGB$NegLL,fGB2$NegLL)BMD_NegLL<-round(BMD_NegLL,4)BMD_AIC<-c(AIC(fTB),AIC(fBB1),AIC(fBB2),AIC(fGG), AIC(fMB),AIC(fGB),AIC(fGB2))BMD_AIC<-round(BMD_AIC,4)C_of_diff_Values<-c(length(BMD_Data$Actual_Freq), sum(abs(BMD_Data$Actual_Freq-BMD_Data$EstFreq_BinD)<=5), sum(abs(BMD_Data$Actual_Freq-BMD_Data$EstFreq_TriBinD)<=5), sum(abs(BMD_Data$Actual_Freq-BMD_Data$'EstFreq_BetaBinD(MLE)')<=5), sum(abs(BMD_Data$Actual_Freq-BMD_Data$'EstFreq_BetaBinD(MGF)')<=5), sum(abs(BMD_Data$Actual_Freq-BMD_Data$EstFreq_GHGBBD)<=5), sum(abs(BMD_Data$Actual_Freq-BMD_Data$EstFreq_McGBBD)<=5), sum(abs(BMD_Data$Actual_Freq-BMD_Data$EstFreq_GammaBinD)<=5), sum(abs(BMD_Data$Actual_Freq-BMD_Data$EstFreq_GrassiaIIBinD)<=5))Overdispersion_BMD<-c(Overdispersion(fTB),Overdispersion(fBB1),Overdispersion(fBB2), Overdispersion(fGG),Overdispersion(fMB), Overdispersion(fGB),Overdispersion(fGB2))Variance_difference<-c(abs(BMD_Variance[1]-BMD_Variance))Variance_difference<-round(Variance_difference,4)rbind(BMD_Data, c("Total",BMD_Total), c("Variance",BMD_Variance), c("p-value","-",BMD_p_value), c("Negative Log Likelihood Value","-","-",BMD_NegLL), c("AIC","-","-",BMD_AIC), c("Count of difference Values",C_of_diff_Values), c("Variance difference",Variance_difference))->BMD_flexed_Dataflextable(data=BMD_flexed_Data,col_keys= c("Bin_RV","Actual_Freq","EstFreq_BinD","EstFreq_TriBinD","EstFreq_BetaBinD(MLE)","EstFreq_BetaBinD(MGF)","EstFreq_GHGBBD","EstFreq_McGBBD","EstFreq_GammaBinD","EstFreq_GrassiaIIBinD"))|> theme_box()|> autofit()|> fontsize(i=c(1:15),j=c(1:10),size=15,part="body")|> fontsize(i=1,j=c(1:10),size=16,part="header")|> bold(i=1,part="header")|> bold(i=c(9:15),j=1,part="body")|> align(i=c(1:15),j=c(1:10),align="center")|> set_header_labels(values= c(Bin_RV="Binomial Random Variable",Actual_Freq="Observed Frequencies",EstFreq_BinD="Binomial Distribution",EstFreq_TriBinD="Triangular Binomial Distribution",'EstFreq_BetaBinD(MLE)'="Beta Binomial Distribution(MLE)",'EstFreq_BetaBinD(MGF)'="Beta Binomial Distribution(MGF)",EstFreq_GHGBBD="Gaussian Hypergeometric Generalized Beta Binomial Distribution",EstFreq_McGBBD="McDonald Generalized Beta Binomial Distribution",EstFreq_GammaBinD="Gamma Binomial Distribution",EstFreq_GrassiaIIBinD="Grassia II Binomial Distribution"))|> align(i=1,part="header",align="center")|> gen_grob(scaling="fixed",fit="width",just="center")->Final_plotplot(Final_plot)
The best-fitting distribution is chosen by comparing five mainmeasurements shown in the above table which are p-value, Negative LogLikelihood value, the count of difference between expected and observedfrequencies in the range of
Then the following five criteria will be considered for the selectionprocedure
- The
p-value$> 0.05$ from the hypothesis test. - The Negative Log Likelihood value.
- The AIC value.
- The number of difference values within the range of
$+/-5$ . - The absolute variance difference between expected and observedfrequency.
Triangular Binomial and Binomial distributions cannot be fitted sinceits p-value
Further, Over-dispersion parameters of all three fitted distributionsare same for the second decimal point (Over-dispersion =
The best-fitting distribution GHGBB has the highest p-value of
About
fitODBOD : R package to fit Overdispersed Binomial Outcome Data
Topics
Resources
License
Unknown, MIT licenses found
Licenses found
Uh oh!
There was an error while loading.Please reload this page.

