- Notifications
You must be signed in to change notification settings - Fork4
Alokia/Idempotent-Generative-Network
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
paper: Idempotent Generative Network,https://arxiv.org/abs/2311.01462
This is a simple unofficial implementation. We trained it on the Celeba dataset.
first, download the Celeba dataset and unzip it to thedata folder.
then, install the requirements:
pip install -r requirements.txt
modify the parameters inconfig.yml as your needed and run:
python train.py
model checkpoint with 1000 epoch training,download here.
These are the parameters ofgenerate.py:
-cp: the path of checkpoint. default:./checkpoints/model.pth--config: the path of config file. default:./config.yml-bs: how many images to generate at once. default:16--nrow: how many images are displayed in a row, only valid whensteps=1. default:4--steps: the times of applying model. default:1--show: whether to show the generated images. default:False-sp: save path of the result image. default: None--device: the device to use. default:cuda--to_grayscale: whether to convert the generated images to grayscale. default:False
generate one step images:
python generate.py -cp"./checkpoints/model.pth" --config"./config.yml" -bs 128 --nrow 16 --show -sp"./result/one_step.png"
generate multi step images:
python generate.py -cp"./checkpoints/model.pth" --config"./config.yml" -bs 8 --steps 3 --show -sp"./result/three_steps.png"
About
Idempotent Generative Network's unofficial pytorch implementation
Topics
Resources
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.

