Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

SETINet is an new net for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence.

License

NotificationsYou must be signed in to change notification settings

Agora-Lab-AI/SETINet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Join our DiscordSubscribe on YouTubeConnect on LinkedInFollow on X.com

Python 3.8+PyTorchLicense: MITarXiv

Overview

SETINet is a state-of-the-art framework for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence. This project implements a deep learning approach to process and analyze radio telescope data, utilizing convolutional neural networks optimized for signal detection in spectral data.

Key Features

  • 🔭 Automated data collection from multiple radio telescope sources
  • 🤖 Deep learning-based signal detection and classification
  • 📊 Real-time data processing and analysis pipeline
  • 📈 Comprehensive visualization and monitoring tools
  • 🔍 Advanced signal processing and noise reduction
  • 💾 Efficient data management and model checkpointing

System Architecture

graph TD    subgraph Data Pipeline        A[Astronomical Data Sources] --> B[DataFetcher]        B --> C[Raw Data Storage]        C --> D[SignalProcessor]        D --> E[Processed Data]    end    subgraph ML Pipeline        E --> F[SETIDataset]        F --> G[DataLoader]        G --> H[SETINet Model]    end    subgraph Training Pipeline        H --> I[Trainer]        I --> J[Model Checkpoints]        I --> K[TensorBoard Logs]        I --> L[Training Metrics]    end    subgraph Model Architecture        M[Input Layer] --> N[Conv2D + ReLU + MaxPool]        N --> O[Conv2D + ReLU + MaxPool]        O --> P[Conv2D + ReLU + MaxPool]        P --> Q[Flatten]        Q --> R[Dense + ReLU]        R --> S[Dropout]        S --> T[Output Layer]    end
Loading

Data Pipeline

graph TD    A[Astronomical Data Sources] --> B[DataFetcher]    B --> C[Raw Data Storage]    C --> D[SignalProcessor]    D --> E[Processed Data]
Loading

Model Architecture

The SETINet model employs a deep convolutional neural network architecture optimized for spectral data analysis:

Input Layer (1 x 1024 x 1024)    │    ▼Conv2D(32) + ReLU + MaxPool    │    ▼Conv2D(64) + ReLU + MaxPool    │    ▼Conv2D(128) + ReLU + MaxPool    │    ▼Flatten    │    ▼Dense(512) + ReLU    │    ▼Dropout(0.5)    │    ▼Output Layer (2)

Installation

Prerequisites

  • Python 3.8+
  • CUDA-capable GPU (recommended)
  • 16GB+ RAM

Setup

  1. Clone the repository:
git clone https://github.com/Agora-Lab-AI/SETINet.gitcd SETINet
  1. Create and activate a virtual environment:
python -m venv venvsource venv/bin/activate# On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

Usage

python main.py

Contributing

We welcome contributions! Please see ourCONTRIBUTING.md for guidelines.

Citation

If you use SETINet in your research, please cite our paper:

@article{setinet2024,title={SETINet: Deep Learning Framework for Extraterrestrial Signal Detection},author={Kye Gomez},journal={arXiv preprint arXiv:2024.xxxxx},year={2024}}

License

This project is licensed under the MIT License - see theLICENSE file for details.

Acknowledgments

  • Breakthrough Listen Initiative for providing open-source data
  • Green Bank Observatory for radio telescope data access
  • The SETI research community for valuable feedback and contributions

## 📬 Contact


Want Real-Time Assistance?

Book a call with here for real-time assistance:


⭐ Star us on GitHub if this project helped you!

About

SETINet is an new net for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp