- Notifications
You must be signed in to change notification settings - Fork0
SETINet is an new net for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence.
License
Agora-Lab-AI/SETINet
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
SETINet is a state-of-the-art framework for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence. This project implements a deep learning approach to process and analyze radio telescope data, utilizing convolutional neural networks optimized for signal detection in spectral data.
- 🔭 Automated data collection from multiple radio telescope sources
- 🤖 Deep learning-based signal detection and classification
- 📊 Real-time data processing and analysis pipeline
- 📈 Comprehensive visualization and monitoring tools
- 🔍 Advanced signal processing and noise reduction
- 💾 Efficient data management and model checkpointing
graph TD subgraph Data Pipeline A[Astronomical Data Sources] --> B[DataFetcher] B --> C[Raw Data Storage] C --> D[SignalProcessor] D --> E[Processed Data] end subgraph ML Pipeline E --> F[SETIDataset] F --> G[DataLoader] G --> H[SETINet Model] end subgraph Training Pipeline H --> I[Trainer] I --> J[Model Checkpoints] I --> K[TensorBoard Logs] I --> L[Training Metrics] end subgraph Model Architecture M[Input Layer] --> N[Conv2D + ReLU + MaxPool] N --> O[Conv2D + ReLU + MaxPool] O --> P[Conv2D + ReLU + MaxPool] P --> Q[Flatten] Q --> R[Dense + ReLU] R --> S[Dropout] S --> T[Output Layer] end
graph TD A[Astronomical Data Sources] --> B[DataFetcher] B --> C[Raw Data Storage] C --> D[SignalProcessor] D --> E[Processed Data]
The SETINet model employs a deep convolutional neural network architecture optimized for spectral data analysis:
Input Layer (1 x 1024 x 1024) │ ▼Conv2D(32) + ReLU + MaxPool │ ▼Conv2D(64) + ReLU + MaxPool │ ▼Conv2D(128) + ReLU + MaxPool │ ▼Flatten │ ▼Dense(512) + ReLU │ ▼Dropout(0.5) │ ▼Output Layer (2)
- Python 3.8+
- CUDA-capable GPU (recommended)
- 16GB+ RAM
- Clone the repository:
git clone https://github.com/Agora-Lab-AI/SETINet.gitcd SETINet
- Create and activate a virtual environment:
python -m venv venvsource venv/bin/activate# On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
python main.py
We welcome contributions! Please see ourCONTRIBUTING.md for guidelines.
If you use SETINet in your research, please cite our paper:
@article{setinet2024,title={SETINet: Deep Learning Framework for Extraterrestrial Signal Detection},author={Kye Gomez},journal={arXiv preprint arXiv:2024.xxxxx},year={2024}}
This project is licensed under the MIT License - see theLICENSE file for details.
- Breakthrough Listen Initiative for providing open-source data
- Green Bank Observatory for radio telescope data access
- The SETI research community for valuable feedback and contributions
- 🌐 Website:https://agoralab.ai
- 🐦 Twitter:@AgoraLabAI
- Twitter:@kyegomez
- Email:kye@swarms.world
Book a call with here for real-time assistance:
⭐ Star us on GitHub if this project helped you!