forked fromSYSU-Jmiao/bookshelf
- Notifications
You must be signed in to change notification settings - Fork47
Virtual bookshelf for math and computer science.
License
NotificationsYou must be signed in to change notification settings
AAAAAIstudy/bookshelf-1
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Inspired by research background and iterative project process.
- 普林斯顿数学分析读本 李馨译
- Introduction to Algorithms 4th Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein
- Algorithms by Jeff Erickson
- 普林斯顿微积分读本 杨爽等译
- Quantum Chemistry: A concise introduction for students of physics, chemistry, biochemistry and materials science by Ajit J Thakkar
- Advanced Algorithms and Data Structures by Marcello La Rocca
- Physical Chemistry: A Molecular Approach by Donald A. McQuarrie & John D. Simon
- Quantum Chemistry by John P. Lowe & Kirk A. Peterson
- Elements of Causal Inference: Foundations and Learning Algorithms by Jonas Peters, Dominik Janzing & Bernhard Scholkopf
- Scientific Computing by Jeffrey R. Chasnov
- 计算机代数系统的数学原理 李超等著
- Numerical Analysis by Richard L. Burden & J. Douglas Faires
- Molecular Quantum Mechanics by Peter Atkins & Ronald Friedman
- Matrix Algebra: Theory, Computations and Applications in Statistics by James E. Gentle
- Modern Quantum Chemistry: Introduction to Advanced Electronic Structure by Attila Szabo & Neil S. Ostlund
- Algorithm Design Manual by Steven S. Skiena
- Lehninger Principles of Biochemistry by David L. Nelson & Michael M. Cox
- Matrix Computations by Gene H. Golub & Charles F. Van Loan
- Molecular Biology 5th Edition by Robert F. Weaver
- 最优化:建模、算法与理论 文再文等著
- Discrete Mathematics and Its Applications by Kenneth H. Rosen
- A Textbook of Graph Theory by R. Balakrishnan & K. Ranganathan
- 模式识别与机器学习 马春鹏著
- Handbook of Combinatorial Optimization by Panos M. Pardalos, Ding-Zhu Du & Ronald L. Graham
- 普林斯顿概率论读本 李馨译
- Probabilistic Numerics: Computation as Machine Learning by Philipp Hennig, Michael A. Osborne & Hans P. Kersting
- High-Dimensional Probability: An Introduction with Applications in Data Science by Roman Vershynin
- Inside Deep Learning: Math, Algorithms, Models by Edward Raff
- C Primer Plus 6th Edition by Stephen Prata
- Modern C by Jens Gustedt
- C++ Primer Plus 6th Edition by Stephen Prata
- Data Structures and Algorithms in C++ by Michael T. Goodrich, Roberto Tamassia & David M. Mount
- 算法竞赛入门经典 刘汝佳编著
- 算法竞赛入门经典-训练指南 刘汝佳等编著
- 统计学(第六版) 贾俊平等著
- SQL 必知必会 钟鸣等译
- SQL 经典实例 刘春辉译
- Excel Bible by Michael Alexander & Dick Kusleika
- Data Analysis with Python and PySpark by Jonathan Rioux
- Introduction to Statistics and Data Analysis: With Exercises, Solutions and Applications in R by Christian Heumann, Michael Schomaker & Shalabh
- Streaming Data by Andrew G. Psaltis
- 精通特征工程 陈光欣译
- 机器学习实战 李锐等译
- Data Mining in Drug Discovery by Rémy D. Hoffmann, Arnaud Gohier & Pavel Pospisil
- R Packages: Organize, Test, Document, and Share Your Code by Hadley Wickham
- Deep Learning in Biology and Medicine by Davide Bacciu, Paulo J.G. Lisboa & Alfredo Velido
- 深度学习 中文花书
- Flink基础教程 王绍翾译
- Efficient Processing of Deep Neural Networks by Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang & Joel Emer
- Drug Design Using Machine Learning by Inamuddin, Tariq Altalhi, Jorddy N. Cruz & Moamen Salah El-Deen Refat
- 神经网络与深度学习 邱锡鹏著
- Data Science for Economics and Finance by Sergio Consoli, Diego Reforgiato Recupero & Michaela Saisana
- 数据科学实战 冯凌秉等译
- Computer Vision Projects with PyTorch: Design and Develop Production-Grade Models by Akshay Kulkarni, Adarsha Shivananda & Nitin Ranjan Sharma
- Natural Language Processing with Transformers: Building Language Applications with Hugging Face by Lewis Tunstall, Leandro von Werra & Thomas Wolf
- 深度学习进阶:自然语言处理 陆宇杰译
- Applied Time Series Analysis and Forecasting with Python by Changquan Huang & Alla Petukhina
- Practical Recommender Systems by Kim Falk
- Deep Learning with #"/AAAAAIstudy/bookshelf-1/blob/main/AI/Transformers%20for%20Machine%20Learning_A%20Deep%20Dive.pdf">Transformers for Machine Learning: A Deep Dive by Uday Kamath, Kenneth L. Graham & Wael Emara
- AI for Computer Architecture: Principles, Practice, and Prospects by Lizhong Chen, Drew Penney & Daniel Jiménez
- ZooKeeper: Distributed Process Coordination by Flavio Junqueira & Benjamin Reed
- Statistical Reinforcement Learning: Modern Machine Learning Approaches by Ralf Herbrich & Thore Graepel
- Interpretable AI: Building Explainable Machine Learning Systems by Ajay Thampi
- The Kaggle Book: Data Analysis and Machine Learning for Competitive Data Science by Konrad Banachewicz & Luca Massaron
- Python语言及其应用 丁嘉瑞等译
- 流畅的Python 安道等译
- High Performance Python by Micha Gorelick & lan Ozsvald
- Cython - A guide for Python programmers by Kurt W. Smith
- Python网络数据采集 陶俊杰等译
- Python网络爬虫权威指南 神烦小宝译
- Python网络编程攻略 安道译
- Python测试驱动开发 安道译
- Python源码剖析:深度探索动态语言核心技术 陈儒著
- Git团队协作 童仲毅译
- CUDA C编程权威指南 颜成钢等译
- Java Programming by Joyce Farrell
- Algorithms in Java 4th by Robert Sedgewick & Kevin Wayne
- Microservices Patterns: With examples in Java by Chris Richardson
- 精通Rust 邓世超译
- Speed Up Your Python with Rust: Optimize Python performance by creating Python pip modules in Rust with PyO3 by Maxwell Flitton
- Linux命令行与Shell脚本编程大全 门佳等译
- AMAI-GmbH/AI-Expert-Roadmap
- vinta/awesome-python
- ml-tooling/best-of-ml-python
- fffaraz/awesome-cpp
- rust-unofficial/awesome-rust
- academic/awesome-datascience
- akullpp/awesome-java
- DovAmir/awesome-design-patterns
- linjing-lab/optimtool
- google/objax
- linjing-lab/sortingx
- cn.julialang.org
- pola-rs/polars-book-cn
- lmmentel/awesome-python-chemistry
- qosf/awesome-quantum-software
- keon/awesome-nlp
- binhnguyennus/awesome-scalabilit
About
Virtual bookshelf for math and computer science.
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published