Movatterモバイル変換


[0]ホーム

URL:


Aller au contenu
Wikipédial'encyclopédie libre
Rechercher

Unités de base du Système international

Un article de Wikipédia, l'encyclopédie libre.

Pour des articles plus généraux, voirUnité de mesure etSystème international d'unités.

Relations entre les sept unités de bases du Système international d'unités (SI). En sens horaire à partir du haut, on retrouve :

Lesunités de base du Système international sont les septunités de mesure indépendantes (ouunités fondamentales) duSystème international à partir desquelles sont obtenues paranalyse dimensionnelle toutes les autres unités, ditesunités dérivées.

Ces unités sont supposées indépendantes dans la mesure où elles permettent de mesurer desgrandeurs physiques indépendantes. Cependant, la définition d'une unité peut faire appel à celle d'autres unités.

Définitions

[modifier |modifier le code]

Les définitions des unités de base duSystème international utilisent des phénomènes physiques reproductibles.

Seul le kilogramme était encore défini par rapport à un objet matériel susceptible de s'altérer, mais cette particularité a pris fin le, à la suite d'une décision prise en par laConférence générale des poids et mesures deredéfinir les unités de mesure du système SI[1],[2].

Tableau des grandeurs physiques de base du SI avec leurs dimensions, unités et symboles[3]
Grandeur physiqueSymbole de la grandeurSymbole de la dimensionNom
de
l'unité
Symbole
de
l'unité
Description
Longueurl,x,r{\displaystyle l,\;x,\;r}etc.Lmètrem

Le mètre« est défini en prenant la valeur numérique fixée de la vitesse de la lumière dans le vide,c, égale à 299 792 458 lorsqu’elle est exprimée enm/s, la seconde étant définie en fonction deνCs[4] ».

Avant le, le mètre était« la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde »[5].

Historiquement, lapremière définition officielle et pratique du mètre, en 1791, établit sa longueur comme égale à la dix millionième partie du quart duméridien terrestre au sens astronomique, c'est-à-dire la circonférence de la Terre[a]. Le calcul exact du quart de méridien a été effectué ensuite partriangulation[6].

La commission Talleyrand de 1790 a proposé une mesure de longueur décimale basée sur la pendule battant la seconde[7], mais n'a pas été retenue.

MassemMkilogrammekg

Le kilogramme« est défini en prenant la valeur numérique de la constante de Planck,h, fixée à 6,626 070 15 × 10−34 J s (oukg m2 s−1), le mètre et la seconde étant définis en fonction dec etνCs[4] ».

Avant le, le kilogramme était la masse du prototype international du kilogramme[8]. Ce dernier, composé d'un alliage deplatine et d'iridium (90 %/10 %), est conservé auBureau international des poids et mesures à Sèvres, enFrance.

Historiquement, lekilogramme (à l'origine nommégrave[9]) était défini comme étant la masse d'un décimètre cube (dm3) d'eau, soit unlitre d'eau. Le gramme était, lui, défini comme la masse d’un centimètre cube d’eau à la température de°C, qui correspond à un maximum demasse volumique[réf. nécessaire].

Temps, duréetTsecondes

La seconde« est définie en prenant la valeur numérique fixée de la fréquence du césium,νCs, la fréquence de la transitionhyperfine de l’état fondamental de l’atome decésium 133 non perturbé, égale à 9 192 631 770 lorsqu’elle est exprimée enHz, unité égale às−1[4] ».

Avant le, la seconde était« la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome decésium 133 » à la température duzéro absolu[10].

La seconde était à l'origine définie à partir de la durée du jour terrestre, divisé en24 heures de60 minutes, chacune d'entre elles durant60 secondes (soit 86 400 secondes pour une journée).

Courant électriqueI,i{\displaystyle I,\;i}IampèreA

L'ampère« est défini en fixant la valeur numérique de lacharge élémentairee égale à 1,602 176 634 × 10−19 quand elle est exprimée enC, unité égale àA s, la seconde étant définie en fonction deνCs[4] ».

Avant le, l'ampère était« l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance de un mètre l'un de l'autre dans le vide produirait entre ces conducteurs une force égale à 2 × 10−7 newton par mètre de longueur[11] ».

Température thermodynamiqueTΘ (thêta)kelvinK

Le kelvin« est défini en prenant la valeur numérique fixée de laconstante de Boltzmann,k, égale à 1,380 649 × 10−23 lorsqu’elle est exprimée enJ K−1, unité égale àkg m2 s−2 K−1, le kilogramme, le mètre et la seconde étant définis en fonction deh,c etνCs[4] ».

Avant le, le kelvin était« la fraction 1/273,16 de la température thermodynamique dupoint triple de l'eau[12] ».

Quantité de matièrenNmolemol

« Une mole contient exactement 6,022 140 76 × 1023 entités élémentaires[4]. » Ce nombre d'entités élémentaires est appelénombre d'Avogadro.

Avant le, la mole était« la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kilogramme decarbone 12[13] ».

« Lorsque l'on emploie la mole, les entités élémentaires doivent être spécifiées et peuvent être des atomes, des molécules, des ions, des électrons, d'autres particules ou des groupements spécifiés de telles particules[13]. »

Intensité lumineuseIν{\displaystyle I_{\nu }}Jcandelacd

La candela« est définie en prenant la valeur numérique fixée de l'efficacité lumineuse d'un rayonnementmonochromatique de fréquence 540 × 1012 Hz,Kcd{\displaystyle K_{\mathrm {cd} }}, égale à 683 lorsqu’elle est exprimée enlm W−1, unité égale àcd sr W−1 oucd sr kg−1 m−2 s3, le kilogramme, le mètre et la seconde étant définis en fonction deh,c etνCs[4] ».

Avant le, la candela était« l'intensité lumineuse, dans une direction donnée, d'une source qui émet unrayonnementmonochromatique de fréquence 540 × 1012 hertz et dont l'intensité énergétique dans cette direction est1/683watt parstéradian[14] ».

Historique

[modifier |modifier le code]

Historiquement, les unités fondamentales étaient fondées sur des phénomènes naturels (fraction du jour solaire terrestre moyen pour laseconde,oscillation d'un pendule, puisdix-millionième partie du quart du méridien astronomique pour lemètreetc.). Néanmoins, ces mesures n’étaient pas facilement transportables ou reproductibles et il est apparu qu'elles n’étaient pas définies de manière suffisamment précise.

Aujourd'hui, certaines unités fondamentales utilisent d'autres définitions, parfois via des unités dérivées (l'ampère est défini en se référant au mètre et au newton). Les unités fondamentales ne sont donc plusstricto sensu indépendantes les unes des autres, mais ce sont lesgrandeurs physiques qu'elles permettent de mesurer qui le sont.

Le système international est l'héritier du système MKSA (mètre-kilogramme-seconde-ampère) adopté en 1946[15] qui, comme son nom l'indique, était fondé sur quatre unités indépendantes. Lekelvin et lacandela s'y rajoutent en 1954[16], puis lamole en 1971[17].

Les unités de base du Système international ont toutes été redéfinies lors de la26e conférence générale des poids et mesures (13-, àVersailles), à partir de sept constantes physiques[1] dont la valeur exacte a été fixée définitivement. Cette réforme est entrée en vigueur le[2],[18],[4]. Les nouvellesconstantes sont :

où les unitéshertz,joule,coulomb,lumen etwatt, qui ont respectivement pour symbole Hz, J, C, lm et W, sont reliées aux unitésseconde,mètre,kilogramme,ampère,kelvin,mole etcandela, qui ont respectivement pour symbole s, m, kg, A, K, mol et cd, selon les relationsHz =s−1 , J =m2 kg s−2 ,C =A s,lm =cd m2 m−2 =cd sr, etW =m2 kg s−3[18],[4].

Notes et références

[modifier |modifier le code]

Notes

[modifier |modifier le code]
  1. À l’époque, la définition du méridien était celle de l’astronomie, à savoir un cercle complet de 40 000 km pour la terre. Son quart, 10 000 km, divisé par dix millions, correspond à 1 m. Le méridien géographique, quant à lui, relie lespôles géographiques et est donc un demi-cercle. Il a été établi après la première définition du mètre et fait environ 20 000 km pour la Terre.

Références

[modifier |modifier le code]
  1. a etbYaroslav Pigenet, « Ces constantes qui donnent la mesure »,CNRS Le journal,‎(lire en ligne, consulté le).
  2. a etbMathieu Grousson, « Mesures : le grand renversement », surCNRS,(consulté le).
  3. Bureau international des poids et mesures,Le Système international d'unités (SI), Sèvres, BIPM,,9e éd., 216 p.(ISBN 978-92-822-2272-0,lire en ligne[PDF]).
  4. abcdefgh eti« 26e Conférence générale des poids et mesures : Résolutions adoptées », surBureau international des poids et mesures, Versailles, 13-16 novembre 2018(consulté le).
  5. 17e Conférence générale des poids et mesures (1983),Résolution 1,Bureau international des poids et mesures.
  6. Métrologie française, « L'évolution historique des unités - Histoire de la mesure », surMétrologie française(consulté le).
  7. (en)John Wilkins,An Essay towards a Real Character, and a Philosophical Language (en),(lire en ligne), partie II, « Chap.VIIIII. Of Measure »,p. 191[Lire en graphie moderne].
  8. « 1re Conférence générale des poids et mesures (1889) »,Bureau international des poids et mesures.
  9. Le nom « kilogramme »,Bureau international des poids et mesures.
  10. 13e Conférence générale des poids et mesures (1967-1968),Résolution 1,Bureau international des poids et mesures.
  11. « Comité international des poids et mesures (1946), Résolution 2 »,Bureau international des poids et mesures.
  12. « 13e Conférence générale des poids et mesures (1967),Résolution 4 »,Bureau international des poids et mesures.
  13. a etb« 14e Conférence générale des poids et mesures (1971),Résolution 3 »,Bureau international des poids et mesures.
  14. 16e Conférence générale des poids et mesures,Résolution 3 (1979),Bureau international des poids et mesures.
  15. Bureau international des poids et mesures 2006, 1.8 – Note historique,p. 19.
  16. « 10e Conférence Générale des Poids et Mesures, Résolution 6 », 1954.
  17. « 14e ConférenceG énérale des Poids et Mesures, Résolution 3 », 1971.
  18. a etb« Convocation de la Conférence générale des poids et mesures (26e réunion) »[PDF], surBIPM, Versailles, 3-16 novembre 2018.

Voir aussi

[modifier |modifier le code]

Articles connexes

[modifier |modifier le code]
v ·m
Unités de baseUnités de base du Système international
Unités dérivées
Préfixes
Préfixes désuets
SI
BIPM
v ·m
Système international
Système CGS
Système astronomique
Système d'unités naturelles
Systèmes de mesure anciens
Systèmes désuets
Systèmes traditionnels
Systèmes spécifiques
v ·m
Longueur (L)
Unités de longueur
Masse (M)
Unités de masse
Temps (T)
Unité de temps
Intensité électrique (I)
Unité électrique
Température (Θ)
Unités de température
Qté de matière (N)
Unité de quantité de matière
Intensité lumineuse (J)
Unités photométriques

Remarques : Engras : les7 unités de base légales du SI ; les grandeurs et unités photométriques sont les seules références subjectives du SI --
Ce document provient de « https://fr.wikipedia.org/w/index.php?title=Unités_de_base_du_Système_international&oldid=225622144 ».
Catégories :
Catégories cachées :

[8]ページ先頭

©2009-2025 Movatter.jp