| Naissance | |
|---|---|
| Décès | (à 53 ans) Varsovie |
| Sépulture | |
| Nom de naissance | |
| Nationalité | |
| Formation | |
| Activités |
| A travaillé pour | |
|---|---|
| Directeur de thèse | |
| Influencé par |
Stanisław Leśniewski (–) est unmathématicien,philosophe etlogicienpolonais qui a contribué à créer et développer l'École de Lvov-Varsovie.
Leśniewski est l'une des plus remarquables personnalités scientifiques dans l'histoire de lalogique, et appartient à la première génération de l'École de Lvov-Varsovie fondée parKazimierz Twardowski.
AvecJan Łukasiewicz (créateur de la notation ditepolonaise inverse) etAlfred Tarski, qui fut son seul docteur, il forma unetroïka qui, durant les décennies 1920 et 1930 firent de l'Université de Varsovie l'un des plus importants centres de recherche delogique mathématique au monde.
Ses contributions les plus importantes furent la construction des troissystèmes formels interdépendants que sont la protothétique, l'ontologie et laméréologie auxquels il donna des noms d'étymologie grecque.
Stanisław Leśniewski est né àSerpoukhov enRussie le.
Sous la direction du philosophe polonaisKazimierz Twardowski, il présenta en 1912 une thèse de doctorat intituléeUne contribution à l'analyse des propositions existentielles, en partie dirigée contre la thèse deFranz Brentano selon laquelle toute proposition catégorique peut être réduite à une proposition existentielle. Leśniewski s'est, par la suite, consacré à l'étude du principe de contradiction et du tiers-exclu. Enfin, contre l'articleZagadnienie istnienia przyszlosci (Le problème de l'existence du futur) deTadeusz Kotarbiński, Leśniewski rédigea en 1913 un article intituléLa vérité est-elle seulement éternelle ou éternelle et sempiternelle?
Ces articles, proprement philosophiques et par leur contenu et par leur traitement (non formalisé) ont été reniés en 1927 dans l'ouvrage majeur,Sur les fondements de la mathématique. Toutefois, les commentateurs contemporains n'ont pu établir avec précision si le reniement de Leśniewski est total ou si certaines thèses sont épargnées.
C'est avec la lecture du célèbre livre deJan ŁukasiewiczSur le principe de contradiction chez Aristote que Leśniewski basculera définitivement de la philosophie à la logique. Découvrant l'antinomie russellienne (ouparadoxe de Russell) qui menace tout l'édificelogique et mathématique, Leśniewski interrompt et condamne ses travaux philosophiques pour s'employer uniquement à la résolution de cette antinomie. Pour cela, il entreprit une lecture minutieuse desPrincipia Mathematica deWhitehead etRussell et desGrundgesetze der Arithmetik deFrege.
C’est ce contexte de crise des fondements des mathématiques qui permet de comprendre le pourquoi de l’œuvre de Leśniewski. Obnubilé par leparadoxe de Russell et rejetant les différentes solutions introduites pour se sauver de ce paradoxe, Leśniewski entama la construction complète d'une nouvelle fondation logique des mathématiques. Même s'il s'opposa vigoureusement à certaines thèses défendues par Frege et par Russell, Leśniewski s'inscrit bien dans le courant logiciste initié par Frege. En effet, selon le logicisme, les notions fondamentales des mathématiques - en premier, celle de nombre - doivent être construites sur les notions - évidentes - de la logique. Leśniewski soutenait que l’union des trois théories déductives qu’il a successivement « inventées », à savoir laméréologie, l’ontologie et la protothétique, doit être considéré comme un nouveau fondement des mathématiques, fondement qui serait préservé de l'antinomie russellienne.
Le premier système que Leśniewski inventa est laméréologie qui, se fondant sur une conception de la classe différente de celle des mathématiciens, a pour but de résoudre le paradoxe de la classe des classes ne se contenant pas elles-mêmes. Par la suite, désirant asseoir logiquement sa méréologie, Leśniewski inventa deux systèmes proprement logiques: l'ontologie et la protothétique. La construction de ces deux systèmes et leurs règles d'inférence devait l'occuper jusqu’à sa mort le.
La protothétique est le premier système dans l'ordre logique, c'est-à-dire qu'il fonde l'ontologie. Il s’agit d’unsystème logiqueaxiomatisé et formalisé. On peut rapprocher la protothétique d’un calcul des propositions disposant d’une quantification d’ordre supérieur. En effet, s’il est possible dans ce système de quantifier les propositions, il est tout aussi possible de quantifier des foncteurs ayant pour argument une ou des propositions.
L’ontologie est, selon Leśniewski, une « logique traditionnelle modernisée (…) considérée avec la théorie des individus ». Si la protothétique peut être rapprochée d'uncalcul des propositions, l’ontologie serait alors l’équivalent d’uncalcul des prédicats.
L’ontologie s’inspire, et c’est pourquoi Leśniewski la décrit comme une logique traditionnelle, contreFrege, de la structure aristotélicienne sujet/prédicat. Une autre influence aristotélicienne, à l’origine du nom de ce système, est à souligner. Nous reprenons la longue citation que Leśniewski emprunte à son collègueTadeusz Kotarbiński :
« Ce nom [l’ontologie] se justifie par le fait que l’unique terme primitif, propre, employé dans l’axiomatique de l’ontologie (…) est ‘est’ qui correspond au grecesti. (…) En vérité, un malentendu pourrait naître du fait que ce nom a déjà acquis droit de cité dans un autre rôle ; on a en effet pris l’habitude depuis longtemps d’appeler ‘ontologie’ les investigations portant ‘sur les principes généraux de l’être’, menées dans l’esprit de certaines parties des livres ‘métaphysiques’ d’Aristote. Il convient cependant de concéder qui si l’on interprète la définition aristotélicienne de la théorie suprême (prote philosophia) (…) comme une théorie générale des objets, alors on peut l’appliquer tant à sa consonance qu’à sa signification au calcul des noms de Leśniewski. » (S. Leśniewski,Sur les fondements de la mathématique, p. 107-108)
Il semblerait que Leśniewski abonde dans ce sens, écrivant qu’il formule « dans cette théorie justement sui generis les « principes généraux de l’être ». Une ambiguïté demeure dans les propos deTadeusz Kotarbiński : comment concevoir que l’ontologie soit un calcul des noms, c’est-à-dire un système prescrivant les règles d’un langage utilisant la catégorie sémantique des noms, et à la fois une théorie générale des objets, c’est-à-dire une ontologie formelle ? Il y a sinon une ambigüité, du moins une thèse métaphysique importante: celle d'une intrication forte entre le domaine des objets et le domaine linguistique des noms. Les commentateurs contemporains considèrent que l’ontologie leśniewskienne est un système exclusivement logique et, dès lors, ne peut remplir les fonctions d’une théorie générale des objets, celle-ci étant l’objet de la méréologie.
La méréologie (appelée dans les premiers écrits théorie générale des ensembles) est une théorie déductive, axiomatisée mais pas formalisée, des touts et des parties.
Initialement, la fonction de la méréologie est de poser les bases nécessaires pour développer la conception leśniewskienne de la classe. Celle-ci, s’opposant aux conceptions que proposent aussi bien les mathématiciens queGottlob Frege etBertrand Russell, doit permettre de résoudre le célèbre paradoxe russellien de la classe des classes ne se contenant pas elles-mêmes. Leśniewski refuse en effet les solutions de cette antinomie proposées par Frege (l’affaiblissement de sa Loi V), Russell (la théorie des types) etZermelo (l’axiome de séparation qui interdit la construction d’ensembles « trop grands ») qu’il juge privées de fondement intuitif, arguant que la solution ne peut trouver son origine que dans une méthode visant à questionner et les raisonnements et les présuppositions menant à la double contradiction.
S’appuyant sur une nouvelle conception de la classe qui s’accorderait, selon ses propres mots, avec « la manière habituelle d’employer les mots ‘classe’ et ‘ensemble’ dans le langage courant », Leśniewski propose une démonstration établissant qu’aucun objet n’est la classe des classes ne se contenant pas elles-mêmes. Ainsi le paradoxe russellien ne peut être reconduit.
La conception leśniewskienne de la classe, bien que définie par un concept classificatoire et contenant tout élément tombant sous ce concept, accepte aussi comme éléments les parties de ses éléments, parties qui peuvent ne pas satisfaire le concept classificatoire. Exemple: la classe des livres de ma bibliothèque contient non seulement tous les livres actuellement présents dans ma bibliothèque mais aussi toutes les pages, l'encre, les couvertures, mais encore les molécules formant le papier, les atomes formant ces dernières molécules, etc.
Cet ouvrage regroupe des notes de cours d'élèves de Leśniewski.
Volume I:
Volume II