Laphysique du solide est l'étude des propriétés fondamentales desmatériauxsolides, cristallins – par exemple la plupart desmétaux –, ou amorphes – par exemple lesverres – en partant autant que possible des propriétés à l'échelle atomique (par exemple lafonction d'onde électronique) pour remonter aux propriétés à l'échelle macroscopique. Bien que celles-ci présentent parfois de fortes réminiscences des propriétésmicroscopiques (par ex. transitionssupraconductrices dans lesquelles despropriétés quantiques se manifestent de façon spectaculaire à l'échelle macroscopique) elles se présentent la plupart du temps comme des propriétés de continuité macroscopique (domaine desmilieux continus) non directement déductibles des propriétés microscopiques. L'objectif de la physique du solide est de mettre en relation des propriétés macroscopiques parfois très banales (ou très utiles) avec le phénomène à l'origine de celles-ci, phénomène qui souvent n'est pas prépondérant à l'échelleatomique.
Dans unsolide, les atomes sont situés à quelquesångströms[1] les uns des autres et sont liés suffisamment fortement pour résister à la contrainte. Pour comprendre comment les propriétés macroscopiques émergent de cette collection d'atomes, la physique des solides se base sur les résultats de deux théories plus fondamentales. D'une part, laphysique quantique, à l'aide de méthodes adaptées au cas des solides, décrit au niveau microscopique les interactions des électrons entre eux et avec les noyaux du solide. D'autre part, laphysique statistique permet de prendre en compte le nombre macroscopique d'atomes dans un solide.
Les connaissances empiriques sur lessolides et leurs propriétés sont très anciennes et jalonnent l'histoire de l'humanité. L'apparition de lamétallurgie, environ 4 000 ansav. J.-C., marque les premières réussites dans le travail desmétaux : l'homme apprend ainsi à travailler lecuivre, lebronze, lefer puis une liste de plus en plus étendue de métaux et d'alliages. Cependant, les connaissances acquises sont trèsempiriques, transmises de maître à compagnon, et ne sont pas reliées sur une science commune. Le premier,Agricola (1494-1555) applique les méthodes scientifiques de laRenaissance et présente une synthèse des techniques de son époque dans son ouvrageDe Re Metallica, paru en1556[2].
Les progrès scientifiques réalisés au tournant duXIXe siècle permettent de soulever un coin du voile. Lesrayons X découverts en1895 vont ainsi permettre àMax von Laue (1879-1960) de réaliser la première expérience dediffraction des rayons X sur un cristal en1912. Cette technique – complétée par la diffraction d'électrons et deneutrons – va être appliquée par la suite de manière systématique à la détermination de lastructure cristalline et des distances interatomiques dans les solides. Parallèlement, en1900Drude (1863-1906) développe unmodèle quasi-classique de la conduction des métaux en supposant ceux-ci remplis d'un gaz d'électrons libres auxquels il applique laphysique statistique deLudwig Boltzmann. Au cours duXXe siècle, découvertes, nouveaux outils et modèles se succèdent à un rythme accéléré : étude des propriétés des solides aux bassestempératures, introduction de lamécanique quantique, apparition dumicroscope électronique...
La délimitation est d'autre part de plus en plus floue entre la physique du solide et lascience des matériaux. À l'origine, la physique du solide était une branche de laphysique fondamentale, et la science des matériaux une branche de laphysique appliquée. Il y a longtemps que cette distinction est caduque, sous l'effet d'une double évolution. La première évolution est celle de la physique du solide vers l'étude de systèmes de plus en plus complexes, et donc de plus en plus proches des systèmes réels et utiles. L'autre évolution est celle de lascience des matériaux, qui, avec l'apparition de moyens fins d'investigation (comme lemicroscope électronique, qui permet une observation à l'échelle atomique) ainsi que d'élaboration (par exemple l'épitaxie, qui permet une élaboration desemi-conducteurs couche d'atomes par couche d'atomes) est parfois devenue une ingénierie des matériaux à l'échelle atomique. Elle s'est donc intéressée de très près aux phénomènes à cette échelle, et a ainsi empiété largement sur le domaine de la physique fondamentale. Au total, la distinction entre ces deux disciplines relève maintenant plus d'une nuance d'approche que d'autre chose.
Les matériaux synthétisés ont vocation à être utilisés dans d'autres sciences, et à ce titre la physique du solide est fréquemment en contact avec d'autres disciplines comme l'optique, l'électronique, lamécanique...
Il existe une grande diversité de solides différents dans la nature, et quels que soient les ensembles que l'on essaie de définir, on trouvera toujours un solide pouvant être classé dans deux ensembles différents. Ci-dessous, nous exposons différentes typologies établies selon les critères suivants : l'existence ou l'absence d'unordre cristallin, la nature de laliaison entre les atomes ou encore la facilité avec laquelle les solides conduisent lecourant électrique.
Uncristal représente une classe importante de solides dans lesquels les mêmes atomes se répètent périodiquement dans les trois dimensions de l'espace. Le cristal forme alors unréseau qui reste identique à lui-même lors de la translation par un vecteur
où, et sont des vecteurs délimitant lamaille élémentaire du réseau et,, sont des entiers relatifs quelconques. La fidélité avec laquelle le cristal se reproduit d'une maille à l'autre est impressionnante. La loi ci-dessus fonctionne encore sur des distances de l'ordre de plusieursmicromètres ; c'est-à-dire que si l'on prend deux atomes séparés par mailles, leur distance sera la même à ~1Å près quels que soient les deux atomes de départ[3].
cristal et ordre à toutes les portées, monocristal et cristallites
Les forces assurant la cohésion des solides sont toutes de nature fondamentalement électriques. Les diverses formes de celles-ci à l'échelle atomique se retrouvent dans les solides.
Le solide le plus dur, lediamant est maintenu par un ensemble deliaisons covalentes qui se renforcent mécaniquement réciproquement, exactement comme dans une molécule à squelette carboné. À l'autre extrémité, se trouvent lescristaux ioniques, par exemple lechlorure de sodium qui est un empilement de charges positives et négatives ordonné, mais sans liaison chimique : les électrons sont à demeure attachés à un noyau et il n'est pas question pour eux de participer directement à lacohésion entre atomes autrement que par l'intermédiaire des ions qu'ils forment. On parle deliaison ionique. Il existe un type de liaison intermédiaire, laliaison ionocovalente qui est une liaison covalente avec une probabilité plus forte de trouver l'électron dans le voisinage d'un type d'atomes que de l'autre. C'est ce type de liaison qu'on retrouve par exemple dans les cristaux du typeblende. Dans le cas où la liaison entre les noyaux et les électrons périphériques est faible, l'électron peut passer indifféremment d'un atome à l'autre sur toute la longueur du cristal. On dit qu'il est délocalisé. Les modèles de telles liaisons sont les métaux, et les électrons délocalisés assurent alors la cohésion en créant unpuits de potentiel piégeant les atomes sur tout le volume de l'échantillon. Une telle liaison est appeléeliaison métallique. Reste enfin le cas des solides formés d'atomes ou de sous structures électroniquement stables, par exemple les cristaux degaz rares. Aucun des mécanismes précédents ne peuvent s'appliquer à ceux-ci, mais il reste encore la possibilité d'une corrélation des orbitales électroniques entre deux atomes voisins : c'est laforce de Van der Waals.
L'une des plus anciennes classification des solides est fonction de leurrésistivité électrique.
Bien avant de connaître l'origine atomique de cette singularisation, on a distingué lesmétaux, presque tous bon conducteurs d'électricité et de chaleur, situés dans la partie inférieure gauche de latable de Mendeleïev. La résistivité de ceux-ci croit avec latempérature. Les autres éléments sont desisolants électriques. Les matériaux situés sur la quatrième colonne varient du statut isolant pour lecarbonediamant à métal pour leplomb. Les matériaux compris entre ces deux extrêmes sont lessemi-conducteurs (silicium,germanium). Ces matériaux ont unerésistivité qui décroît avec la température, par la promotion thermique d'électrons de valence au statut d'électrons de conduction. L'étain est un cas intéressant car il possède unetransition de phase entre un état semi-conducteur basse température (étain gris) et un état métallique haute température (étain blanc) ; c'est latransition de Mott(en). Celle-ci s'accompagne d'un changement de la structure cristalline et est une cause de désagrégation des étains anciens de collection. Une autre façon de faire varier la conductivité électrique d'un semi-conducteur est ledopage, qui par le biais d'impuretés soigneusement choisies enrichit le matériau en électrons de conduction ou en lacunes d'électrons de valence.
Les propriétés dépendent fondamentalement de lamicrostructure amorphe ou cristalline ainsi que de la composition chimique, avec une sensibilité allant parfois jusqu'au niveau de l'impureté (1 atome par million ou moins). Deux genres d'élaboration sont possibles :
les méthodes les plus performantes — mais aussi les plus coûteuses — abordent les deux aspects en une seule étape. C'est le cas de l'épitaxie, de lapulvérisation cathodique ou de lacristallogenèse. De plus la nature même de ces méthodes limite la taille des échantillons produits ;
d'autres méthodes — moins performantes mais économiquement très importantes — sont spécifiquement dévolues à chacun des deux aspects : par exemple l'élimination des impuretés parfusion de zone ou leur ajout contrôlé pardopage d'un côté pour les semi-conducteurs, des méthodes d'hypertrempe ou derecuit d'un autre côté pour maîtriser la microstructure cristalline des métaux.
Propriétés mécaniques et structurales (arrangement des atomes dans les solides)
Les solides étant caractérisés par des formes définies, pérennes et stables, les premières investigations réussies portèrent sur la façon dont ils pouvaient revenir à leur état initial après l'application decontraintes extérieures. C'est le domaine desdéformations élastiques, dont l'étude fut initiée parRobert Hooke (1635-1703). Cependant, cette capacité de retour à l'état antérieur sans dommage résiduel est restreinte à des déformations dues à des contraintes limitées. Au-delà de ce domaine s'étend le domaine des déformations irréversibles et de larupture. Ainsi, le domaine desdéformations plastiques, dans lequel les déformations sont assez importantes pour modifier suffisamment et de façon irréversible la structure interne du solide et empêcher un retour à l'état de départ. Comme autre déformation irréversible, lefluage est une déformation lente sous une contrainte modérée mais continue, avec une accumulation progressive de dommages sur la microstructure. Un autre effet des déformations irréversible peut être de changer les caractéristiques physiques des matériaux. Par exemple, un matériau présentant à l'origine une certaine plasticité peut devenir cassant etfragile après avoir été soumis à des cycles de déformation : c'est l'écrouissage.
Les propriétés mécaniques macroscopiques des solides sont modélisées en supposant que les matériaux sont des corps continus, dont le comportement est caractérisé par des grandeurs phénoménologiques – c'est-à-dire mesurées expérimentalement. Si cette approche marche bien pour décrire les déformations élastiques réversibles, au cours de laquelle les atomes bougent peu autour de leur position d'équilibre, elle ne permet ni d'expliquer la valeur observée dumodule de Young, ni les comportements révélateurs de la structure microscopique du matériau : par exemple pourquoi un fil de fer écroui est plus fragile qu'un fil de fer à l'état recuit. La démarche propre à la physique du solide de partir du microscopique pour en dériver les propriétés macroscopiques explique l'écrouissage par une accumulation de défauts dans la structure cristalline.
Un cristal réel présente une grande quantité de défauts qui sont autant d'écarts par rapport au cristal parfait et qui en modifient profondément les propriétés. Ces défauts sont classés pour l'essentiel suivant des critères géométriques et topologiques. On distingue ainsi lesdéfauts ponctuels tels que les lacunes, les défauts linéaires tels que lesdislocations, les défauts plans tels que lesjoints de grains et les défauts tridimensionnels tels que les précipités. En particulier, l'écrouissage s'explique par la multiplication des dislocations suivant le mécanisme de Franck et Read : la déformation du réseau cristallin est possible lorsque les dislocations se déplacent, mais celles-ci se multiplient puis se bloquent mutuellement rendant ainsi le mouvement des dislocations de plus en plus difficile.
Historiquement, les premières investigations sur la structure interne des solides ont été réalisées en clivant des cristaux et en remarquant que les faces faisaient toujours un angle particulier entre elles. Par une réflexion s'étalant sur plusieurs siècles, les cristallographes en ont déduit que les cristaux pouvaient être décrits comme la répétition infinie d'une unité élémentaire, lamaille, selon les vecteurs d'unréseau géométrique, puis l'étude mathématique de ces réseaux par les méthodes de lathéorie des groupes a abouti à la classification complète des cristaux à l'aide de leurs propriétés de symétrie. Plus qu'une simple méthode de catégorisation, l'étude dugroupe ponctuel de symétrie et dugroupe d'espace permet de prévoir directement certaines propriétés d'un cristal, ou du moins simplifie grandement les calculs de mécanique quantique nécessaires à leur explication. On peut citer à titre d'exemple le fait qu'aucun cristalcentrosymétrique – c'est-à-dire identique à lui-même lorsque l'on applique une symétrie ponctuelle – ne possède de propriétéoptique non linéaire d'ordre deux.
Au réseau dans l'espace réel est associé un réseau dans l'espace réciproque, un espace mathématique abstrait qui sert à décrire certaines propriétés du cristal comme les propriétés dediffraction. La découverte des rayons X à la fin duXIXe siècle, puis leur utilisation enradiocristallographie prouva de façon définitive la nature atomique des solides tout en permettant de mesurer très précisément les paramètres de maille de nombreux cristaux.
Dans le cas idéal, le Graal du physicien du solide est d'extraire toutes les propriétés macroscopiques (magnétiques, électriques, mécaniques...) des propriétés atomiques – c'est-à-dire essentiellement des fonctions d'onde électroniques. Ceci n'est malheureusement pas toujours possible à cause de la très grande complexité induite par le grand nombre d'atomes mis en jeu dans le moindre échantillon (le solide est un objet macroscopique, et à ce titre, possède un nombre d'atomes d'un ordre de grandeur comparable avec lenombre d'Avogadro).
Parmi les quelques cas où cette démarche peut être cependant fructueuse figure celui important méthodologiquement, historiquement et techniquement du cristal parfait infini.
L'existence d'unepériodicité dans le potentiel vu par les électrons simplifie fortement le calcul des fonctions d'onde : lethéorème de Bloch montre alors que la fonction d'onde a la même période spatiale que leréseau cristallin.
Enphysique quantique des solides, une simplification capitale apparait dans la résolution de la fonction d'onde du solide : c'est la séparation du problème de la fonction d'onde des électrons assurant la cohésion du solide (électrons périphériques ou délocalisés) de celle du cœur des atomes (noyaux et électrons des couches internes restant liés à celui-ci), due à la très grande différence de dynamique entre ces deux composants (le noyau est plusieurs milliers de fois plus massique que l'électron) qui pourtant interagissent fortement (sinon la cohésion du solide ne serait pas assurée). Il en résulte paradoxalement une très faible variation du couplage entre ces deux modes de l'hamiltonien pour des variations mêmes relativement importantes de l'autre mode, tant que les effets moyens entre le cœur des atomes et les électrons de liaison restent pratiquement constants. C'est l'approximation de Born-Oppenheimer.
Un cube métallique flottant par magnétisme au-dessus d'un électroaimant fonctionnant grâce à un matériau supraconducteur à très basse température.
La supraconductivité (ou supraconduction) est un phénomène caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs.
Dans les supraconducteurs conventionnels, des interactions complexes se produisent entre les atomes et les électrons libres et conduisent à l'apparition de paires liées d'électrons, appelées paires de Cooper. L'explication de la supraconductivité est intimement liée aux caractéristiques quantiques de la matière. Alors que les électrons sont des fermions, les paires d'électrons se comportent comme des bosons, de spin égal à 0, et sont « condensées » dans un seul état quantique, sous la forme d'un superfluide de paires de Cooper.
Un effet similaire de la supraconductivité est la superfluidité ou suprafluidité, caractérisant un écoulement sans aucune résistance, c'est-à-dire qu'une petite perturbation que l'on soumet à ce type de liquide ne s'arrête jamais, de la même façon que les paires de Cooper se déplacent sans aucune résistance dans un supraconducteur.
Il existe également d'autres classes de matériaux, collectivement appelés « supraconducteurs non conventionnels » (par opposition à la dénomination de supraconductivité conventionnelle), dont les propriétés ne sont pas expliquées par la théorie conventionnelle. En particulier, la classe des cuprates (ou « supraconducteurs à haute température critique »), découverte en 1986, présente des propriétés supraconductrices à des températures bien plus élevées que les supraconducteurs conventionnels. Toutefois, ce que les physiciens nomment « haute température » reste extrêmement bas comparativement aux températures à la surface de la Terre (le maximum est 133 K, soit −140°C)1.
Bien que ce sujet soit, depuis le début des années 1990, un des sujets les plus étudiés de la physique du solide, en 2010 aucune théorie ne décrit de façon satisfaisante le phénomène de la supraconductivité à haute température critique.
Dispositifs basés sur des propriétés de physique du solide
↑[Agricola 1556](la + en)Georg Agricola,Herbert Hoover et Lou Henry Hoover,De re metallica, Translated from the First Latin Edition of 1556, New York, Dover Publications,, surarchive.org(lire en ligne). Traduction française par A. France-Lanord (1992), éd. Gérard Kloop, Thionville.