Unfiltre passe-bas est unfiltre qui laisse passer lesbasses fréquences et qui atténue leshautes fréquences, c'est-à-dire les fréquences supérieures à lafréquence de coupure. Il pourrait également être appelé filtre coupe-haut. Le filtre passe-bas est l'inverse dufiltre passe-haut et ces deux filtres combinés forment unfiltre passe-bande.
Le concept de filtre passe-bas est une transformation mathématique appliquée à des données (un signal). Le filtrage passe-bas peut se faire numériquement ou avec des composants électroniques. Cette transformation a pour fonction d'atténuer les fréquences supérieures à safréquence de coupure et ce, dans le but de conserver uniquement les basses fréquences. La fréquence de coupure du filtre est la fréquence séparant les deux modes de fonctionnement idéaux du filtre : passant ou bloquant.
Un filtre passe-bas idéal a un gain constant dans sa bande passante et un gain nul dans la bande coupée. La transition entre les deux états est instantanée. Mathématiquement, il peut être réalisé en multipliant le signal par une fenêtre rectangulaire dans ledomaine fréquentiel ou par uneconvolution avec unsinus cardinal (sinc) dans le domaine temporel. Ce type de filtre est appelé « mur de brique » dans le jargon des ingénieurs.
Naturellement, un filtre idéal n'est pratiquement pas réalisable, car un sinus cardinal est une fonction infinie. Ainsi, le filtre devrait prédire l'avenir et avoir une connaissance infinie du passé pour effectuer laconvolution et obtenir l'effet désiré. Il est possible d'approcher très fidèlement ce filtre de manière numérique lorsqu'on dispose d'un signal pré-enregistré (en ajoutant des zéros aux deux extrémités de la série d'échantillons) ou pour unsignal périodique.
En temps réel, les filtres numériques peuvent approcher ce filtre en insérant un délai volontaire dans le signal, ce qui permet de « connaître le futur du signal ». Cette opération crée un déphasage entre la sortie et l'entrée et naturellement, plus le délai inséré est long, plus le filtre se rapprochera du filtre idéal.
Un filtre passe-bas peut être implémenté de façon analogique avec des composants électroniques. Ainsi, ce genre de filtre s'applique sur des signaux continus en temps réel. Les composants et la configuration du circuit fixeront les différentes caractéristiques dufiltre, telles que l'ordre, la fréquence de coupure et sondiagramme de Bode. Les filtres analogiques classiques sont du premier ou du second ordre. Il existe plusieurs familles de filtres analogiques :Butterworth,Tchebychev,Bessel,elliptique, etc. L'implémentation des filtres de même famille se fait généralement en utilisant la même configuration de circuit, et ceux-ci possèdent la même forme defonction de transfert, mais ce sont les paramètres de celle-ci qui changent, donc la valeur des composants du circuit électrique.
Un filtre passe-bas du premier ordre est caractérisé par sa fréquence de coupure. La fonction de transfert du filtre est obtenue en dénormalisant le filtre passe-bas normalisé en remplaçant par, ce qui donne lafonction de transfert suivante :
où
Le module et la phase de la fonction de transfert sont égaux à :
Il y a plusieurs méthodes pour implémenter ce filtre. Une réalisation active et une réalisation passive sont ici présentées.K est le gain du filtre.
La manière la plus simple de réaliser physiquement ce filtre est d'utiliser uncircuit RC. Comme son nom l'indique, ce circuit est constitué d'unerésistance et d'uncondensateur de capacité. Ces deux éléments sont placés ensérie avec la source du signal. Le signal de sortie est récupéré aux bornes du condensateur.Alors que la résistance est constante quelle que soit la fréquence, il n'en est pas de même pour le condensateur; plus la fréquence est élevée, moins le condensateur a le temps de se charger/décharger. Lorsque la fréquence tend vers l'infini, le condensateur se comporte comme un court-circuit (shunt). Lorsque la fréquence tend vers 0, il se comporte comme un circuit ouvert. Il s'agit en quelque sorte d'une résistance variable en fonction de la fréquence.Pour retrouver la fonction de transfert de ce filtre, il faut travailler dans le domaine de Laplace en utilisant lesimpédances des éléments. Avec cette technique, le circuit devient un simplediviseur de tension, et on obtient :
Dans cette équation, est unnombre complexe (j tel que j²=-1) et est la pulsation du circuit ou fréquence radiale, exprimée en rad/s. Comme la fréquence de coupure d'uncircuit RC est :
Ici, la pulsation de coupure, est également la pulsation propre du circuit. Elle est également l'inverse de la constante de temps du circuit (majorée de la constante).Ainsi, on obtient bel et bien la fonction de transfert typique du filtre passe-bas du premier ordre.
Avec cette fonction de transfert, on peut obtenir lesdiagrammes de Bode :
On distingue alors deux situations idéales :
On remarque que pour, on a = -3 dB.
Il est également possible de réaliser un filtre passe-bas avec un circuit actif. Cette option permet d'ajouter du gain au signal de sortie, c'est-à-dire d'obtenir une amplitude supérieure à 0 dB dans la bande passante. Plusieurs configurations permettent d'implémenter ce genre de filtre.
Dans la configuration présentée ici, la fréquence de coupure se définit comme suit :
En utilisant les propriétés desamplificateurs opérationnels, et lesimpédances des éléments, on obtient la fonction de transfert suivante :
En basse fréquence, le condensateur agit comme uncircuit ouvert, ce qui est confirmé par le fait que le terme de droite de l'équation précédente tend vers 1. La formule simplifiée ainsi obtenue nous donne le gain dans la bande passante :
En haute fréquence, lecondensateur agit comme uncircuit fermé et le terme de droite tend vers 0, ce qui fait tendre la formule vers zéro.
Avec la fonction de transfert, on peut démontrer que l'atténuation dans la bande rejetée est de 20 dB/décade ou de 6 dB par octave telle qu'attendu pour un filtre d'ordre 1.
Il est fréquent de voir un circuit d'amplification ou d'atténuation transformé en filtre passe-bas en ajoutant un condensateur C. Ceci diminue la réponse du circuit à haute fréquence et aide à diminuer les oscillations dans l'amplificateur. Par exemple, unamplificateur audio peut être un filtre passe-bas actif avec une fréquence de coupure de l'ordre de 100 kHz pour réduire le gain à des fréquences qui autrement oscilleraient. Cette modification du signal n'altère pas les informations « utiles » du signal, car la bande audio (bande de fréquence audible par l'humain) s'étend jusqu’à environ 20 kHz, ce qui est largement inclus dans la bande passante du circuit.
Un filtre passe-bas du second ordre est caractérisé par sa fréquence propre et par lefacteur de qualité Q. Il est représenté par la fonction de transfert suivante :
Le module et la phase de la fonction de transfert sont donc égaux à :
La manière la plus simple de réaliser physiquement ce filtre est d'utiliser uncircuit RLC. Comme son nom l'indique, ce circuit est constitué d'unerésistance, d'uncondensateur de capacité et d'unebobine d'inductance. Ces trois éléments sont placés ensérie avec la source du signal. Le signal de sortie est récupéré aux bornes du troisième et dernier élément, lecondensateur. Pour retrouver la fonction de transfert de ce filtre, il faut travailler dans le domaine de Laplace en utilisant lesimpédances des éléments. Avec cette technique, le circuit devient un simplediviseur de tension, et on obtient :
Avec :
Le module et la phase de ce circuit sont :
Plusieurs types de filtres existent pour réaliser un filtre actif du deuxième ordre. Les plus populaires sont les structures MFB et VCVS.
Les filtres d'ordre supérieur sont généralement composés de filtres d'ordre 1 et 2 en cascade. La réalisation d'un filtre d'ordre 5, par exemple, se fait en plaçant deux filtres d'ordre 2 et un filtre d'ordre 1. Il serait possible de réaliser directement un filtre d'ordre 5, mais la difficulté de conception en serait grandement augmentée.Il faut également savoir que tout filtre d'ordre supérieur à 2 peut être décomposé en produit (cascade) de filtre d'ordre 1 et 2, du aux propriétés des polynômes (tout polynôme d'ordre supérieur à 2 peut être factorisé en produit de polynômes de degré inférieur ou égal à 2). Cela explique pourquoi il est inutile de concevoir directement un filtre d'ordre 5 alors que l'on peut obtenir exactement le même résultat avec la cascade de deux filtres d'ordre 2 et d'un d'ordre 1. La conception d'un filtre d'ordre supérieur à 2 est pourtant une pratique qui a existé, principalement aux débuts de l'électronique où les composants actifs étaient relativement chers. Un filtre d'ordre 5 conçu comme tel nécessite en effet un seul composant actif, alors que la cascade de 3 filtres en aurait demandé 3.
Voirfiltre numérique.
Filtres | |
---|---|
Types defiltres | |
filtres linéaires | |
filtres numériques |