Movatterモバイル変換


[0]ホーム

URL:


Aller au contenu
Wikipédial'encyclopédie libre
Rechercher

Conductivité thermique

Un article de Wikipédia, l'encyclopédie libre.
Conductivité thermique
Description de cette image, également commentée ci-après
La conductivité thermique est l'aptitude d'un matériau à transférer la chaleur.
Données clés
Unités SIWatt par mètre-kelvin (W m−1 K−1)
DimensionM·L·T −3·Θ −1
NatureGrandeurscalaireintensive
Symbole usuelλ{\displaystyle \lambda } ouK{\displaystyle K}
Lien à d'autres grandeursφ{\displaystyle {\overrightarrow {\varphi }}} =λ{\displaystyle -\lambda }grad{\displaystyle {\overrightarrow {\mathrm {grad} }}}(T){\displaystyle (T)}

modifier

Page d’aide sur l’homonymie

Pour les articles homonymes, voirConductivité.

Laconductivité thermique (ouconductibilité thermique) d'unmatériau est unegrandeur physique qui caractérise sa capacité à diffuser la chaleur dans les milieux sans déplacement macroscopique de matière[1]. C'est le rapport de l'énergie thermique (quantité dechaleur) transférée par unité de temps (donc homogène à une puissance, enwatts) et de surface augradient detempérature. Notéeλ (anciennementK voirek), la conductivité thermique intervient notamment dans laloi de Fourier.

Généralités

[modifier |modifier le code]

Quand le matériau considéré esthomogène etisotrope, laloi de Fourier s'écrit[1] :

φ=λgradT{\displaystyle {\vec {\varphi }}=-\lambda \,{\overrightarrow {\operatorname {grad} }}\,T}

où :

φ{\displaystyle {\vec {\varphi }}\,} désigne ladensité de flux thermique (W/m2),
λ la conductivité thermique (W m−1 K−1),
grad{\displaystyle {\overrightarrow {\operatorname {grad} }}\,} l'opérateurgradient,
T latempérature (K).

Un matériau a par exemple une conductivité thermique de 1 W m−1 K−1 si ungradient thermique de 1 K/m induit parconduction unflux thermique de 1 W/m2 (de sens opposé au gradient).

Lorsque le matériau est anisotrope, sa conductivité thermique varie selon les directions. Leλ mentionné dans la loi de Fourier peut alors s'exprimer par un tenseur de conductivité[2] :

λ =(λ1,1λ1,2λ1,3λ2,1λ2,2λ2,3λ3,1λ3,2λ3,3){\displaystyle {\begin{pmatrix}\lambda _{1,1}&\lambda _{1,2}&\lambda _{1,3}\\\lambda _{2,1}&\lambda _{2,2}&\lambda _{2,3}\\\lambda _{3,1}&\lambda _{3,2}&\lambda _{3,3}\end{pmatrix}}}

avec les remarques suivantes :

Définir les axes de coordonnées selon des directions particulières permet de simplifier le tenseur de conductivité en annulant tous les coefficients de la matrice qui ne sont pas des coefficients diagonaux. Leλ de la loi de Fourier s'exprime alors de la manière suivante[2] :

λ =(λ1,1000λ2,2000λ3,3){\displaystyle {\begin{pmatrix}\lambda _{1,1}&0&0\\0&\lambda _{2,2}&0\\0&0&\lambda _{3,3}\end{pmatrix}}}
Exemple du transfert thermique à travers une paroi (une dimension, régime permanent) :

Considérons une paroi d'épaisseure dont les deux surfaces externes, planes et d'aireS, sont maintenues à des températures uniformes et constantesT1 etT2 (avec par exempleT2>T1{\displaystyle T_{2}>T_{1}}). Alors la puissance thermiqueΦ transférée à travers la paroi est[1] :

Φ=λSe(T2T1){\displaystyle \Phi =\lambda \,{\frac {S}{e}}\,(T_{2}-T_{1})}

Dans le système international d'unitésΦ s'exprime enwatts (W).

La conductivité thermique du matériau d'une paroi (mesurée en laboratoire et indiquée dans la documentation des fabricants) et son épaisseur permettent notamment de calculer lesdéperditions thermiques au travers de cette paroi sur une période déterminée (un an, un hiver, etc.).

Exemple : une paroi d'unmètre carré de surface et d'un mètre d'épaisseur, de conductivité thermique 0,5 W m−1 K−1, est soumise à un flux de chaleur de 0,5 W pour une différence de température de1 K entre ses deux faces, soit en une heure une déperdition de 0,5 Wh.

Plus la conductivité thermique est élevée, plus le matériau est conducteur de chaleur ; plus elle est faible, plus il est isolant. Lecuivre, avec une conductivité thermique de 380 W m−1 K−1, est ainsi plus de 10 000 fois plus conducteur de la chaleur que lepolyuréthane (0,023 W m−1 K−1)[3].

La conductivité dépend principalement de :

  • la nature du matériau ;
  • la température ;
  • d’autres paramètres comme l’humidité et la pression.

La conductivité thermique va généralement de pair avec laconductivité électrique. Les métaux par exemple, bons conducteurs de l'électricité, sont aussi de bons conducteurs thermiques. Il y a des exceptions, comme lediamant qui a une conductivité thermique élevée (entre 1 000 et 2 600 W m−1 K−1) alors que sa conductivité électrique est basse, tandis que legraphène (5 300 W m−1 K−1) est meilleur conducteur thermique et bien meilleur conducteur électrique (du moins dans certaines directions, car c'est un matériau fortement anisotrope).

Conductivité des gaz

[modifier |modifier le code]

La conductivité des gaz purs et des mélanges peut être calculée à partir de laméthode de Chapman-Enskog en utilisant un potentiel d'interaction molécule-molécule tel que lepotentiel Lennard-Jones. Cette propriété de transport macroscopique (domaine continu) est l'image des transferts de quantité de mouvement et d'énergie à l'échelle moléculaire qui croissent avec la force des collisions, donc avec la température et qui s'opposent à l'advection de laquantité de mouvement dans le milieu.

Corps purs

[modifier |modifier le code]

La conductivité d'uncorps pur sans degré de liberté interne est étroitement liée à saviscositéμ{\displaystyle \textstyle \mu } et donnée par l'expression suivante

λ=5CV2μ=5α2(MT)12σ2ΩCVtrans,α=516(kBπNA)12=8.4419...×1025J12K12mol12{\displaystyle \lambda ={\frac {5C_{V}}{2}}\mu ={\frac {5\alpha }{2}}{\frac {(MT)^{\frac {1}{2}}}{\sigma ^{2}\Omega ^{*}}}C_{V}^{trans}\,,\quad \alpha ={\frac {5}{16}}\left({\frac {k_{B}}{\pi N_{A}}}\right)^{\frac {1}{2}}=8.4419...\times 10^{-25}\,J^{\frac {1}{2}}\cdot K^{-{\frac {1}{2}}}\cdot mol^{\frac {1}{2}}}

T{\displaystyle T} est la température,M{\displaystyle M} lamasse molaire,NA{\displaystyle N_{A}} lenombre d'Avogadro,kB{\displaystyle k_{B}} laconstante de Boltzmann,σ{\displaystyle \sigma } lasection efficace etΩ{\displaystyle \Omega ^{*}} l'intégrale de collision réduite par sa valeur utilisant un potentielsphères dures. Ce terme dépend faiblement de la température, il est donc voisin de l'unité. Si on prendΩ=1{\displaystyle \Omega ^{*}=1} on retrouve l'approximation d'un milieu composé desphères dures parfaitement élastiques. Le termeT12{\displaystyle T^{\frac {1}{2}}} représente le nombre de collisions par unité de temps.

La chaleur massique à volume constant est réduite à sa composante liée à la translation :

CV=CVtrans=3R2M{\displaystyle C_{V}=C_{V}^{trans}={\frac {3R}{2M}}}

La contribution des degrés de liberté internes est obtenue en utilisant lacorrélation d'Eucken.

La quantitéσΩ{\displaystyle \sigma \Omega ^{*}} est souvent disponible dans les bases de données sous forme tabulée[4] ou sous forme polynomiale

y=i=i1i2aiTi{\displaystyle y=\sum _{i=i_{1}}^{i_{2}}a_{i}T^{i}}

i1{\displaystyle i_{1}} peut être négatif. On trouve également des approximations faisant intervenir des termes enebiT{\displaystyle e^{-b_{i}T}}.

Ce type d'approximation est également utilisé pour donner une expression numériqueλ=f(T){\displaystyle \lambda =f(T)}[5].

Mélanges gazeux

[modifier |modifier le code]
Conductivité translationnelle de l'air à l'équilibre à pression normale. Valeur exacte et approximations.
Conductivité interne de l'air à l'équilibre à pression normale. Valeur exacte et approximations.

La conductivité translationnelle d'un mélange gazeux deN{\displaystyle N} corps est solution d'unsystème algébrique linéaire d'ordreN{\displaystyle N} et derangN1{\displaystyle N-1}[4],[6]. Elle s'exprime donc sous la formeλ=f(T,xi(T)){\displaystyle \lambda =f\left(T,x_{i}(T)\right)}xi{\displaystyle x_{i}} est lafraction volumique de l'espècei{\displaystyle i} dans le mélange. Il existe nombre d'approximations précises dans un domaine plus ou moins large (voir figure ci-contre). Elles sont généralement basées sur une approximation de la solution formelle sous forme d'une série dedéterminants. On obtient ainsi[7] :

λ=ixiλixi+jiψijxj{\displaystyle \lambda =\sum _{i}{\frac {x_{i}\lambda _{i}}{x_{i}+\sum _{j\neq i}\psi _{ij}x_{j}}}}

avec (par exemple) :

ψij=DiiDijxj{\displaystyle \psi _{ij}={\frac {{\mathcal {D}}_{ii}}{{\mathcal {D}}_{ij}}}x_{j}}

D{\displaystyle \textstyle {\mathcal {D}}} est lecoefficient de diffusion binaire.

Beaucoup d'autres approximations sont possibles[7],[8].

On peut obtenir avec le même type de méthode des approximations de la conductivité interne, avec cependant une précision assez modeste (voir courbes).

Conductivité des solides

[modifier |modifier le code]

À l'échelle atomique, letransfert de chaleur dans les solides peut être réalisé par le biais de toute particule ou quasi-particule. La conductivité thermique correspond à la somme des contributions de celles-ci. Dans les solides, le transfert de chaleur est principalement dû auxphonons, auxélectrons et auxmagnons. Les magnons peuvent représenter une part importante de la conductivité thermique dans certains matériaux comme lescuprates. Des contributions d'autres particules restent possibles[9].

Dans lesmétaux, le mouvement desélectrons libres est prépondérant dans la conduction de chaleur du fait de leur vitesse importante et de leur liberté de mouvements, bien qu'une faible part d'entre eux soient thermiquement excités. Dans les non-métaux, la vibration des atomes est la plus importante dans ce rôle[10]. La conductivité thermique et laconductivité électrique sont donc étroitement liées. En effet, dans un solide, les vibrations des atomes ne sont pas aléatoires et indépendantes les unes des autres, mais correspondent à des modes propres de vibration, aussi appelés « phonons » (on peut faire par exemple l’analogie avec unpendule ou unecorde de guitare, dont la fréquence de vibration est fixée). Ces modes propres de vibration correspondent à desondes qui peuvent se propager dans le matériau, si sa structure est périodique (organisée). Cette contribution est donc plus importante dans uncristal, ordonné, que dans unverre, désordonné (d’où par exemple la différence de conductivité thermique entre lediamant ci-dessus et leverre dans le tableau)[10].

Mathématiquement, la conductivité thermiqueλ peut donc s'écrire comme la somme de deux contributions[10] :

λ=λe+λp{\displaystyle \lambda =\lambda _{\text{e}}+\lambda _{\text{p}}}

où :

  • λe est la contribution des porteurs de charge (électrons ou trous), ou conductivité thermique électronique ;
  • λp est la contribution des vibrations des atomes (phonons), ou conductivité thermique de réseau.

La contribution des porteurs de charge est liée à laconductivité électrique σ du matériau par la relation deWiedemann-Franz[11] :

λe=LTσ{\displaystyle \lambda _{e}=LT\sigma }

L est appeléfacteur de Lorentz[11]. Ce nombreL dépend des processus de diffusion des porteurs de charge (ce qui correspond plus ou moins à la façon dont ils sont gênés par des obstacles lors de leurs déplacements, voir aussidiffusion des ondes) ainsi que de la position duniveau de Fermi. Dans les métaux, on le considérera égal au nombre deLorenzL0, avec :

L0=π23(ke)2=2,45×108V2K2{\displaystyle L_{0}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}=2{,}45\times 10^{-8}\;\mathrm {V} ^{2}\mathrm {K} ^{-2}}

où :

En réalité,L varie selon la température et le métal considéré :

MatériauxFacteur de Lorenz[12]
(× 10−8 V2 K−2)
à
°C
Facteur de Lorenz[12]
(× 10−8 V2 K−2)
à100 
°C
Aluminium 2,14 2,19
Argent 2,31 2,38
Bismuth 3,53 3,35
Cuivre 2,20 2,29
Fer 2,61 2,88
Or 2,32 2,36
Plomb 2,64 2,53
Sodium 2,12

Évolution avec l'humidité

[modifier |modifier le code]

Pour les matériaux de construction, qui peuvent être sujets à d'importants taux d'humidité, il existe une relation permettant de relier les conductivités du matériau sec et du matériau humide lorsque des mesures ne peuvent être réalisées. Cette relation est la suivante[13] :

λ=kλ0e0,08H{\displaystyle \lambda =k\,\lambda _{0}\mathrm {e} ^{0{,}08\,H}}

où :

  • k est un coefficient de dimensions ;
  • H est l’humidité relative en pourcentage ;
  • λ0 est la conductivité thermique du matériau sec ;λ la conductivité thermique du matériau en condition d'humidité H
  • e représente lafonction exponentielle.

Mesure pour les solides

[modifier |modifier le code]

État stationnaire

[modifier |modifier le code]

La détermination de la conductivité thermique d’un matériau repose sur le lien entre legradient de température et leflux de chaleur qu'il génère dans ce matériau[14]. Le principe est illustré sur la figure suivante :

Légende
Légende

L’une des extrémités de l’échantillon de sectionA est fixée à un doigt froid (bain thermique) dont le rôle est d'évacuer le flux thermique traversant l'échantillon, et l’extrémité opposée à unechaufferette dissipant dans l’échantillon unepuissance thermiqueQ obtenue pareffet Joule, de manière à produire un gradient thermique suivant la longueur de l’échantillon. Desthermocouples séparés par une distanceL mesurent la différence de température ΔT le long de l’échantillon. Un troisième thermocouple, calibré, est également fixé à l’échantillon pour déterminer sa température moyenne (la température de mesure). La conductivité thermique est alors donnée par[14] :

λ=Q×LA×ΔT{\displaystyle \lambda ={\frac {Q\times L}{A\times \Delta T}}}.

Si ΔT n’est pas trop important (de l'ordre de°C), la conductivité thermique mesurée est celle correspondant à la température moyenne mesurée par le troisième thermocouple. Le principe de la mesure repose alors sur l’hypothèse que la totalité du flux de chaleur passe par l’échantillon. La précision de la mesure dépend donc de la capacité à éliminer les pertes thermiques, que ce soit parconduction thermique par les fils,convection par le gaz résiduel,radiation par les surfaces de l’échantillon ou pertes dans la chaufferette : la mesure s'effectue donc dans desconditions adiabatiques[14].

Pour assurer la meilleure précision possible, l’échantillon dont on souhaite mesurer la conductivité thermique est donc placé dans une chambre de mesure sous vide (pour minimiser la convection). Cette chambre est elle-même enveloppée dans plusieurs boucliers thermiques dont la température est régulée (afin de minimiser les effets radiatifs). Enfin, les fils des thermocouples sont choisis de manière à conduire le moins possible la chaleur[14].

Étant donné qu’il est d'autant plus difficile de minimiser les pertes thermiques que la température augmente, cette technique ne permet la mesure de la conductivité thermique qu’à des températures inférieures à la température ambiante (de2 à200 K sans difficulté, et jusqu’à300 K (27 °C) pour les meilleurs appareils de mesure).

Méthode dite « Laser Flash »

[modifier |modifier le code]

Pour les températures supérieures à la température ambiante, il devient de plus en plus difficile d’éliminer ou de tenir compte des pertes thermiques par radiation (conditions adiabatiques), et l’utilisation de la technique à l’état stationnaire présentée ci-dessus n’est pas recommandée. Une solution est de mesurer ladiffusivité thermique en lieu et place de la conductivité thermique. Ces deux grandeurs sont en effet liées par la relation :

λ(T)=a(T)d(T)Cp(T){\displaystyle \lambda (T)=a(T)d(T)C_{p}(T)}

où :

Si l’on suppose que la masse volumique ne varie pas avec la température, il suffit de mesurer la diffusivité thermique et la chaleur spécifique pour obtenir une mesure de la conductivité thermique à haute température.

La figure suivante schématise l’appareillage utilisé pour la mesure de conductivité thermique par la méthode dite « laser flash »[15] :

Légende
Légende

Un échantillon cylindrique dont l’épaisseurd est nettement plus faible que son diamètre est placé dans un porte-échantillon qui se trouve à l’intérieur d’un four maintenu à température constante. Une de ses faces est illuminée par des pulses (de l’ordre de la milliseconde) émis par unlaser, ce qui assure un chauffage uniforme de la face avant. La température de la face arrière est mesurée, en fonction du temps, à l’aide d’uncapteur de mesureinfrarouge. En l’absence de pertes thermiques de l’échantillon, la température devrait augmenter de manière monotone. Dans une situation réelle, l’enregistreur mesurera un pic de température suivi d’un retour à la température du four. Le temps t nécessaire pour que la face arrière atteigne la moitié de la température de pic (par rapport à la température du four), permet de déterminer la diffusivité thermique suivant :

a=1,37d2tπ2{\displaystyle {\mathfrak {a}}={\frac {1{,}37\,d^{2}}{t\,\pi ^{2}}}}
avec :
d : diamètre de l'échantillon (m)
t : temps caractéristique (s)

Il est alors possible de calculer la conductivité thermique grâce à la masse volumique et la chaleur spécifique.

La difficulté de cette technique réside dans le choix des paramètres de mesure optima (puissance du laser et épaisseur de l'échantillon).

Dans la construction

[modifier |modifier le code]

Résistance thermique d'une paroi

[modifier |modifier le code]
Article détaillé :paroi (construction).

En thermique du bâtiment, la valeur λ de la conductivité thermique entre dans le calcul de larésistance thermique d'uneparoi.

Pour qualifier les matériaux hétérogènes au travers desquels la chaleur se propage en même temps par conduction, convection et rayonnement, la donnée de la conductivité thermique n'est pas suffisante. Pour les qualifier, on utilise unevaleur de résistance thermique déduite d'essais en laboratoire.

Comme la conductivité thermique d'un matériau varie en fonction de la température et de l'humidité de celui-ci, les documentations technico-commerciales des matériaux doivent préciser, avec la valeur deλ, les conditions dans lesquelles cette valeur est obtenue. Cette valeurλ déclarée doit être éventuellement certifiée par un agrément technique.

D'autre part on opère une distinction entreλi, la conductivité thermique d'un matériau dans une paroi intérieure ou extérieure lorsque le matériau est protégé contre l'humidité due à la pluie ou à la condensation, et d'autre partλe, la conductivité thermique du même matériau non protégé contre cette humidité[16].

Normes et règlements

[modifier |modifier le code]

En France, ont été promulguées des normes successives pour inciter les bâtisseurs à une isolation thermique maximale des bâtiments, notamment les normesRT 2000,RT 2005 etRT 2012.

Conductivités thermiques de quelques matériaux

[modifier |modifier le code]
Article détaillé :Liste de conductivités thermiques.
Valeurs expérimentales de conductivité thermique[pas clair]

Les conductivités thermiques des substances courantes varient sur au moins quatreordres de grandeur[17]. Les gaz ont généralement une faible conductivité thermique, tandis qu'elle est élevée pour les métaux purs. Par exemple, dans desconditions normales, la conductivité thermique ducuivre est plus de 10 000 fois supérieure à celle de l'air.

De tous les matériaux, lesallotropes du carbone, tels que legraphite et lediamant, sont généralement considérés comme ayant les conductivités thermiques les plus élevées àtempérature ambiante[18]. La conductivité thermique du diamant naturel à température ambiante est plusieurs fois plus élevée que celle d'un métal hautement conducteur comme le cuivre (bien que la valeur précise varie en fonction du type de diamant)[19].

Les conductivités thermiques de certaines substances sélectionnées sont répertoriées ci-dessous ; une liste étendue peut être trouvée dans laliste de conductivités thermiques. Ces valeurs sont des estimations illustratives seulement, car elles ne tiennent pas compte des incertitudes de mesure ou de la variabilité des définitions des matériaux.

SubstanceConductivité thermique (W m−1 K−1)Température (°C)
Air0.02625
Styrofoam[20]0.03325
Eau[21]0.608926.85
Béton[21]0.92
Cuivre[21]384.118.05
Diamant naturel[19]895–135026.85

Métaux

[modifier |modifier le code]

Les métaux ont des conductivités élevées, entre 20 et 418 watts par mètre-kelvin[22].

MatériauConductivité thermique
(W m−1 K−1)
à20 
°C
Acier doux 46
Acier inoxydable (18 %chrome, 8 %nickel) 16
Aluminium (pureté de 99,9 %) 237
Al-SiC 150–200
Argent 418[23]
Cuivre 390[23]
Étain 66,6
Fer 80[24]
Fonte 50
Or 317
Platine 71,6
Plomb 35[24]
Titane 20
Zinc 116

Pierre naturelle

[modifier |modifier le code]

Lespierres naturelles employées dans la construction ont des valeurs de conductivité thermique entre 0,15 et 3,5 W m−1 K−1.

MatériauxConductivité thermique
(W m−1 K−1)
à20 
°C
Ardoise (parallèle)2,50[25]
Ardoise (perpendiculaire)1,4[25]
Basalte 2[25]
Calcaire (2 g/cm3) 1[25]
Craie 0,92[25]
Granite (2,8 g/cm3) 2,2[25]
Grès (2,2 g/cm3) 1,3[25]
Marbre 2,08–2,94
Mortier dechaux 0,87
Pouzzolane 0,15
Schiste2,2[26]

Terre

[modifier |modifier le code]
MatériauxConductivité thermique
(W m−1 K−1)
à20 
°C
Adobe (terre crue) 0,32
Brique (terre cuite) 0,84[23]
Terre (sèche) 0,75

Bois

[modifier |modifier le code]

À densité et humidité égales, le bois résineux est plus conducteur que le bois feuillu. Plus un bois est dense, plus il est humide et plus il est conducteur.

MatériauxConductivité thermique
(W m−1 K−1)
à20 
°C
Aggloméré 0,15[25]
Bois dechêne 0,16[25]
Bois denoyer (0,65 g/cm3) 0,14[25]
Bois depin (parallèle aux fibres) 0,36
Bois de pin (perpendiculaire aux fibres) 0,15
Contreplaqué 0,11–0,15[25]

Isolants

[modifier |modifier le code]

En termes de bâtiment, selon la norme françaiseRT 2012, un matériau est considéré comme isolant si sa conductivité thermique est inférieure à 0,065 watt par mètre-kelvin[27].

MatériauxConductivité thermique
(W m−1 K−1)
à20 
°C
Carton0,11
Laine 0,05
Laine de bois 0,036–0,042
Laine de roche 0,033–0,044[28]
Laine de verre0,030–0,046[28]
Liège 0,038–0,042[23]
Mousse de polyuréthane rigide (PUR) 0,025
Mousse phénolique 0,018–0,025
Ouate de cellulose 0,038–0,042
Paille (perpendiculaire aux fibres) 0,052[29]
Perlite 0,038
Polystyrène expansé (EPS) 0,036
Polyisocyanurate (PIR) 0,023
Roseau (en panneau) 0,056

Dérivés du carbone

[modifier |modifier le code]

Si lediamant a une conductivité thermique très élevée, celle du diamant bleu naturel l’est plus encore. On peut donc examiner des gemmes pour déterminer si elles sont de véritables diamants en utilisant un appareil de contrôle de la conductivité thermique, un des instruments standard utilisés engemmologie[réf. nécessaire].

En conséquence, les diamants de n'importe quelle taille paraissent toujours très froids au toucher en raison de leureffusivité thermique élevée.

MatériauxConductivité thermique
(W m−1 K−1)
à20 
°C
Carbone vitreux (1,5 g/cm3)4[30]
Charbon de bois (0,2 g/cm3) 0,055[25]
Diamant 1 000–2 600
Graphène 4 000–5 300
Graphite sens{\displaystyle \parallel } plans graphène1 950[31]
Graphite sens{\displaystyle \perp } plans graphène5,7[31]
Graphite polycristallin80[32]
Houille (1,35 g/cm3) 0,26[25]

Matériaux divers

[modifier |modifier le code]
MatériauxConductivité thermique
(W m−1 K−1)
à20 
°C
Air (100 kPa) 0,0262
Amiante 0,16778
Asphalte (2,1 g/cm3) 0,06[25]
Bakélite (1,3 g/cm3) 1,4[25]
Béton (parpaing) 0,92[23]
Cuir0,088[réf. nécessaire]
Dihydrogène (gaz) 0,18
Dioxygène (gaz) 0,027
Eau 0,6[23]
EPDM 0,36–0,40
Époxy 0,25
Hélium (gaz) 0,14[24]
Nitrure de silicium 20–65
PVC (polymère) 0,17
Quartz 6,8–12
Silicium 149
Verre 1,2[23]

Conductivités thermiques des éléments

[modifier |modifier le code]

Conductivité thermique des éléments enW cm−1 K−1 à27 °C[33]. Certaines valeurs manquantes sont disponibles sur l'article « Conductivité thermique des solides » sur le site techniques-ingenieur.fr[2].

HHe
Li
0,847
Be
2
 BCNOFNe
Na
1,41
Mg
1,56
Al
2,37
Si
1,48
PSClAr
K
1,024
Ca
2
 Sc
0,158
Ti
0,219
V
0,307
Cr
0,937
Mn
0,0782
Fe
0,802
Co
1
Ni
0,907
Cu
4,01
Zn
1,16
Ga
0,406
Ge
0,599
As
0,5
SeBrKr
Rb
0,582
Sr
0,353
 Y
0,172
Zr
0,227
Nb
0,537
Mo
1,38
Tc
0,506
Ru
1,17
Rh
1,5
Pd
0,718
Ag
4,29
Cd
0,968
In
0,816
Sn
0,666
Sb
0,243
TeI
0,45
Xe
Cs
0,359
Ba
0,184
*
Lu
0,164
Hf
0,23
Ta
0,575
W
1,74
Re
0,479
Os
0,876
Ir
1,47
Pt
0,716
Au
3,17
Hg
0,0834
Tl
0,461
Pb
0,353
Bi
0,0787
Po
0,2
AtRn
FrRa**
LrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
  
 *
La
0,134
Ce
0,113
Pr
0,125
Nd
0,165
Pm
0,15
Sm
0,133
Eu
0,139
Gd
0,105
Tb
0,111
Dy
0,107
Ho
0,162
Er
0,145
Tm
0,169
Yb
0,385
 **
AcTh
0,54
PaU
0,276
Np
0,063
Pu
0,0674
AmCmBkCfEsFmMdNo

Notes et références

[modifier |modifier le code]
  1. ab etcMathieu (J.P.), Kastler (A.) et Fleury (P.),Dictionnaire de la physique, Masson Eyrolles,
  2. ab etcMichel Laurent et Pierre-Louis Vuillermoz,Conductivité thermique des solides, Techniques de l'Ingénieur, 29 p.(lire en ligne),p. 3
  3. (en) U. Jarfelt et O. Ramnäs, « Thermal conductivity of polyurethane foam - best performance »,10th International Symposium on District Heating and Cooling« Sektion 6 a: Heat distribution – pipe properties »,‎ 3-5 septembre 2006(lire en ligne[PDF], consulté le).
  4. a etb(en)Joseph Oakland Hirschfelder,Charles Francis Curtiss etRobert Byron Bird,Molecular Theory of Gases and Liquids,John Wiley and Sons,(ISBN 978-0-471-40065-3), « Chap. 8: Transport Phenomena in Dilute Gases »
  5. (en) Carl L. Yaws,Transport Properties of Chemicals and Hydrocarbons, Amsterdam/Boston, Gulf Professional Publishing,, 715 p.(ISBN 978-0-323-28658-9)
  6. (en) GilbertoMedeiros Kremer, « The Methods of Chapman-Enskog and Grad and Applications »,RTO-EN-AVT 194,‎ 2011[1]
  7. a etb(en) Georges Duffa,Ablative Thermal Protection System Modeling,AIAA,, 431 p.(ISBN 978-1-62410-171-7)
  8. Touloukian 1970.
  9. Romuald Saint-Martin,Croissance cristalline, structure et propriétés de transport thermique des cuprates unidimensionnels Sr2CuO3, SrCuO2 et La5Ca9Cu24O41 (thèse de doctorat en chimie), université Paris-Sud,, 201 p.(résumé),p. 135.
  10. ab etc« Les propriétés thermiques »,De l'atome à l'objet,université Paris Sciences et Lettres(consulté le).
  11. a etb« Qu’est-ce que la loi Wiedemann – Franz – Nombre de Lorenz – Définition », surthermal-engineering.org,(consulté le).
  12. a etbG. W. C. Kaye et T. H. Laby,Table of Physical and Chemical Constants, Éditions Longmans Green, Londres, 1966
  13. Pierre Delot, « Conductivité thermique », surballederiz.fr/,(consulté le)
  14. abc etdDalila Bounoua,Synthèse et études de cuprates de basse dimensionnalitéà propriétés thermiques fortement anisotropes, Université Paris-Saclay,, 360 p.(lire en ligne),p. 172,173
  15. A.Degiovanni,Diffusivité thermique et méthode flash,vol. 185, Revue générale de thermique,,p. 420-422
  16. « Conductivité thermique des matériaux (λ) », surenergieplus-lesite.be(consulté le)
  17. (en) Michael J.Heap, Alexandra R.L.Kushnir, JérémieVasseur, Fabian B.Wadsworth, PaulineHarlé, PatrickBaud, Ben M.Kennedy, Valentin R.Troll et Frances M.Deegan, « The thermal properties of porous andesite »,Journal of Volcanology and Geothermal Research,vol. 398,‎1er juin 2020,p. 106901(ISSN 0377-0273,DOI 10.1016/j.jvolgeores.2020.106901Accès libre,Bibcode 2020JVGR..39806901H,S2CID 219060797).
  18. (en) BostonCollege, « An unlikely competitor for diamond as the best thermal conductor », surPhys.org,(consulté le).
  19. a etb(en) John R. Rumble (dir.),CRC Handbook of Chemistry and Physics,Boca Raton, CRC Press/Taylor & Francis,,99e éd., « Thermal Conductivity in W cm−1 K−1 of Metals and Semiconductors as a Function of Temperature ».
  20. « Conductivité thermique des matériaux et gaz courants », surengineeringtoolbox.com.
  21. ab etcBird, Stewart et Lightfoot 2006,p. 270-271.
  22. « Conductivité et propriétés des métaux », surtibtech.com(version du surInternet Archive).
  23. abcdef etgJ. Ph. Pérez et A. M. Romulus,Thermodynamique, fondements et applications, Masson,p. 155
  24. ab etcHarris Benson,Physique,t. 1 :Mécanique, Saint-Laurent, Québec, Éditions du Renouveau Pédagogique,,3e éd.,p. 519.
  25. abcdefghijklmn etoHandbook of Chemistry and Physics
  26. Pompeo et Gueret, « CONDUCTIVITE THERMIQUE DES MATERIAUX »[PDF],(consulté le)
  27. Dimitri Molle et Pierre-Manuel Patry,RT 2012 et RT existant : Réglementation thermique et efficacité énergétique, Éditions Eyrolles,(lire en ligne)
  28. a etb« Recherche multicritères », surACERMI(consulté le).
  29. Réseau Français de la Construction Paille, « Caractéristiques techniques », surrfcp.fr(consulté le)
  30. « Carbone vitreux pour l'industrie et le laboratoire »[PDF], surMersen(consulté le)
  31. a etb« Propriétés et structure des céramiques », surIUT en ligne
  32. « Graphite polycristallin — Conductivité Thermique », surNetsch
  33. (en) David R. Lide,CRC Handbook of Chemistry and Physics, CRC Press,,90e éd., 2804 p., Relié(ISBN 978-1-4200-9084-0)

Voir aussi

[modifier |modifier le code]

Bibliographie

[modifier |modifier le code]

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

Articles connexes

[modifier |modifier le code]

Liens externes

[modifier |modifier le code]
v ·m
Propriétés physico-chimiques des substances
Propriété
Articles liés
Ce document provient de « https://fr.wikipedia.org/w/index.php?title=Conductivité_thermique&oldid=228167313 ».
Catégories :
Catégories cachées :

[8]ページ先頭

©2009-2025 Movatter.jp