Jää onvedenkiinteä olomuoto. Jäätä esiintyy luonnonvesien jääpeitteessä kuten joissa, järvissä jamerijäässä ja myöslumipeitteessä,ilmakehässä jajäätiköissä. Luonnonoloissa vesi jäätyy heksagonaaliseen eli kuusiokulmaiseen kiderakenteeseen.
Jään kiderakenne
Normaalipaineessamakea vesijäätyy 0 °C:n (273,15 K, 32 °F)lämpötilassa.Paine ja vedensuolaisuus alentavat veden jäätymispistettä[1]. Meriveden, jonka suolaisuus on 32 PSU, jäätymispiste on –1,8 °C.Itämeren vähäsuolainenmurtoveden (suolaisuus 6 PSU) jäätymispiste on noin –0,3 °C:ssa[2][3]. Jää on poikkeuksellinen siinä mielessä, että useimmat aineet kiinteässä olomuodossa ovat tiheämpiä kuin nesteenä. Jää kuitenkin on harvempaa kuin nestemäinen vesi.
Ainoastaan vesi jäätyy ja muodostaa jäätä. Muut aineetjähmettyvät ja muodostavat kiinteitä olomuotoja. Siitä huolimatta arkikielessä jäällä voidaan viitata muihinkin aineisiin kuin veteen. Esimerkiksi hiilidioksidi härmistyy –78,5 °C lämpötilassa kiinteäksihiilidioksidijääksi, josta käytetään myös nimityksiä hiilihappojää tai kuivajää. Hiilidioksidijäätä käytetään jäähdytykseen monenlaisissa teollisuuden sovelluksissa.
Jään heksagonaalisen kiderakenteen takia, jääntiheys on noin 10 % nestemäisen veden tiheyttä pienempi, joten jää kelluu veden pinnalla. Puhtaan jään tiheys on noin 0,917 kg/dm³. Vesi siis laajenee jäätyessään tilavuudeltaan noin 10 %, joten maaperässä olevan veden jäätyminen saattaa aiheuttaa muun muassa routimista, kivienrapautumista sekä rakenteidenroutahaittoja[4][5].
Jäätiköllä lumi muuttuu jääksi, kun lumen sisältämät ilmahuokoset umpeutuvat ilmakupliksi uuden lumen painosta. Tällöin lumen tiheys on noin 0,83 kg/dm³.
Jäällä on useimpiin muihin kiinteisiin aineisiin verrattuna poikkeuksellisen pienikitkakerroin, toisin sanoen jää on liukasta. Tämän on aikaisemmin selitetty johtuvan siitä tunnetusta seikasta, että korkea paine alentaa jään sulamispistettä. Oletettiin, että jään päällä olevan kappaleen paino aiheuttaisi paineen, jonka vaikutuksesta ohut kerros jään pinnalta sulaisi ja saisi kohteen liukumaan pintaa pitkin.[6] Esimerkiksiluistimen terän alla paine olisi niin suuri, että sen vaikutuksesta syntynyt ohut sulan veden kerros toimisi ikään kuin voiteluaineena luistimen ja jään välissä.[7] Tämä niin sanottupainesulamisteoria esitettiin jo 1800-luvulla.[6] Se ei kuitenkaan selittänyt, miten luisteleminen on mahdollista silloinkin, kun jään lämpötila on alle -3,5 °C.[6] Lisäksi vesi onöljyihin verrattuna huono voiteluaine.[8] Kokemus on kuitenkin osoittanut, ettätaitoluistelun kannalta optimaalinen jään lämpötila on -5,5 °C jajääkiekossa -9°C.[6]
Toinen jään vähäisenkitkan selittämiseksi esitetty teoria oletti, että jään pinnalla olevat molekyylit eivät muodosta kovin vahvaa sidosta sen sisällä olevien kanssa ja että sen vuoksi ne voivat liikkua melkein kuin sulan veden molekyylit. Ne pysyisivät näin ollen puolittain nestemäisessä tilassa, joka mahdollistaisi minkä tahansa kohteen liukumisen paineesta riippumatta. Tämän teorian esittiMichael Faraday jo vuonna 1850, ja sitä tukivat havainnot siitä, miten toisiaan vasten painetut jääkappaleet jäätyvät kiinni toisiinsa, mutta yleisempää huomiota osakseen se sai vasta 1990-luvulla. Tämän teorian ovat kuitenkin kyseenalaistaneetatomivoimamikroskopian avulla suoritetut kokeet, jotka osoittavat, että jään pinnalla todella on ohut sulan veden kerros, mutta ellei jää ole lähellä sulamispistettään, tämä kerros on niin ohut, ettei sillä voi olla oleellista vaikutusta jään liukkauteen.[9]
Kolmas teoria,kitkalämpöteoria olettaa, että jään ja sen päällä olevan kappaleen välinenkitka saa aikaan jään ohuen pintakerroksen sulamisen. Tämä teoria yksinään ei kuitenkaan selitä, miksi jää on liukasta silloinkin, kun kohde on sen päällä levossa, ja myös lämpötilan ollessa selvästi nollan alapuolella.[6]
Kattava selitys jään pienelle kitkalle edellyttää kaikkien edellä mainittujen tekijöiden ottamista huomioon.[10] Tämä malli mahdollistaa jään ja eri materiaalien välisen kitkakertoimen kvantitatiivisen arvioinnin lämpötilan ja liukumisnopeuden funktiona. Yleisimmissä tilanteissa, jotka liittyvät talviurheiluun tai ajoneuvojen renkaiden liukumiseen jäisellä teillä, tärkein liukkauteen vaikuttava tekijä on ohuen sulan kerroksen syntyminen jään pinnalle kitkalämmön vaikutuksesta. Jään liukkauteen vaikuttavat tekijät ovat edelleen aktiivisen tieteellisen tutkimuksen kohteena.[8]
Merijää on merivedestä muodostuvaa jäätä. Merivesi jäätyy, kun se on jäähtynytjäätymispisteeseen. Jäätymispiste riippuu meriveden suolaisuudesta[1][11]. Itämerellä esiintyy merijäätä vuosittain[12][3].
Makea järvivesi jäätyy, kun pintavesi on jäähtynyt jäätymispisteeseen. Järviveden jäätymispiste on noin 0 °C. Veden lämpötila vaikuttaa sen tiheyteen ja alkaessaan jäähtyä, järvivesi saavuttaa ensin tiheysmaksimin lämpötilan (noin +4 °C) (täyskierto). Jäähtymisen jatkuessa pintaveden lämpötila laskee jäätymispisteeseen ja jäätyminen alkaa[5].
Koska 0-asteinen vesi on kevyempää kuin 4-asteinen, alkaa vesistöjen jäätyminen veden pinnasta. Veden pinnalla oleva jää- ja lumikerros toimii eristeenä, mikä parantaaelämän mahdollisuuksia napa-alueiden vesistöissä. Talvella eläimet voivat vaeltaa laajemmalle alueelle etsimään ravintoa kantavan jään ansiosta.
Vesieliöiden on täytynyt myös sopeutua elinympäristöönsä, joka talvisin peittyy jäällä. Jääpeite vaikuttaa eri tavoin vedenalaiseen elinympäristöön, koska jääpeite
vähentää veden virtauksia, sillä veden lämpötila pysyy hyvinkin muuttumattomana jään alla. Tämä vaikuttaa ravinteiden ja kaasujen, esimerkiksi hapen kulkeutumiseen vedessä.[13]
vähentää valon läpäisykykyä jopa yli 99 %. Tämä vähentää kasvienyhteyttämistä jään alla. Yhteyttäminen jatkuu kuitenkin läpi talven.[13]
vähentää kaasujen vaihtoa, mikä voi aiheuttaa hapettomia alueita etenkin lähellä pohjaa.[13] Esimerkiksiruutana on kehittänyt erityisen kyvyn pysyä hengissä hapettomissa oloissa tuottamalla alkoholia.
Suomessajärvet ja meri jäätyvät tavallisesti talvella, mistä on sekä hyötyä että haittaa ihmisille.Laivaliikennettä varten on käytettäväjäänmurtajialaivaväylien tekemiseen. Toisaalta etenkinsaaristossa jää mahdollistaa nopeamman ja vaivattomamman liikkumisen jääteillä.
Jään paksuus ei välttämättä kerro jään kantavuutta. Keväällä jää on erilaista kuin syksyllä, ja virtauspaikoissa on jää usein ohuempaa kuin lähellä olevassa vähemmän virtaavassa paikassa. Veden suolapitoisuus vaikuttaa myös jään kantavuuteenlähde?.
Koska veden jäätymispiste riippuu sen suolaisuudesta, voidaan hyvin kylmässä (alle 0 °C) avomeressä ajelehtivillajäävuorilla havaita ilmiö, jossa jäävuori jättää taakseen ohuen "jäävanan", pintaan juuri muodostuneen jääkerroksen. Tämä johtuu siitä, että jäävuori on muodostunut makeasta vedestä, joka jäätyy lähempänä nollaa astetta kuin merivesi. Näin ollen mereen joutuneen jäävuoren massa pysyy jäänä, eikä sula veteen, kuten normaalisti.
Jäät ovat erityisen heikkoja syksyllä ja kevättalvella. Syksyllä jää voi olla vaarallisen heikkoa keskellä järveä, vaikka se olisi turvallista lähellä rantaa. Keväällä aurinko sulattaa jäätä nopeasti, ja aamulla kantava jää voi pettää illalla. Keskitalvella vaarallisia ovat esimerkiksi salmissa, jokien suistoissa ja niemenkärjissä olevat virtauspaikat, joissa on avantoja.
Jää- ja lumipeite vähentävät ilmaston lämpenemistä, sillä ne heijastavat auringonsäteitä takaisin avaruuteen. Tämä on yksi syy, miksi tutkijat ovat huolestuneitailmaston lämpenemisen seurauksena häviävistä jääpeitteistä.
Etelämantereella jaGrönlannissa olevista vanhoista jääkerroksista voidaan tutkiamaapallonilmaston muutoksia jopa kymmenien tuhansien vuosien takaa, koska lumi sulkee sisäänsä ilmakuplia puristuessaan jäätikköjääksi.
Ennen jääkaappien, pakastinten ja muiden kylmälaitteiden yleistymistä jäätä kerättiin muun muassa Suomessa talvisin etenkin karjatalouden käyttöön, lypsetyn maidon jäähdyttämiseksi paremman säilyvyyden vuoksi. Vesistöjen jäätä sahattiin kevättalvella määrämittaisiksi kuutioiksi, jotka nostettiin ja kuljetettiin hevosreellä varastoon varjoisaan ja viileään paikkaan lähelle maatilan maitokeittiötä. Halvin tapa säilyttää jäätä oli sahanpurujen, sammalen tms. peittämä kasa, mutta jäätä varten saatettiin rakentaa erityinen jäähuone tai jääkellari,maakellari varjoisaan pohjoisrinteeseen. Tasakokoisten, suorakulmaisten jääpalojen välit tiivistettiin lumella, sahanpuruilla, mudalla tai muulla sellaisella, ettei lämmin ilma pääse sulattamaan jäävarastoa. Varhaisimmat jääkaapitkin perustuivat sähkö- tai kaasuenergian sijaan elintarvikkeiden lähelle omiin osastoihinsa asetettuihin jääpaloihin.[14] Nykyaikainen versio tästä ovatkylmälaukkujen pakastimessa jäädytettävät, muovikuoriset ”kylmäkallet”. Jäädyttämöistä kuljetettua jäätä käytetään monissa lämpimissä maissa yhä tuoreen kalan tai muiden herkkien elintarvikkeiden säilyttämiseen esimerkiksi toreilla.
↑K. V. Laurikainen, Uuni Nurmi, Rolf Qvickström, Erkki Rosenberg, Matti Tiilikainen: ”Olomuodot ja energia”, Lukion fysiikka I, s. 116. WSOY, 1972. ISBN 951-0-00557-6
↑Kenneth Chang: Explaining Ice: The Answers Are Slippery. The New York Times, 21.2.2006. Artikkelin verkkoversio. Viitattu 16.3.2022.Arkistoitu 11.12.2008.
↑Lasse Makkonen, Maria Tikanmäki: Modeling the friction of ice. Cold Regions Science and Technology, Kesäkuu 2014, nro 102, s. 84–93. doi:10.1016/j.coldregions.2014.03.002