Extra Data Types¶
Up to now, you have been using common data types, like:
intfloatstrbool
But you can also use more complex data types.
And you will still have the same features as seen up to now:
- Great editor support.
- Data conversion from incoming requests.
- Data conversion for response data.
- Data validation.
- Automatic annotation and documentation.
Other data types¶
Here are some of the additional data types you can use:
UUID:- A standard "Universally Unique Identifier", common as an ID in many databases and systems.
- In requests and responses will be represented as a
str.
datetime.datetime:- A Python
datetime.datetime. - In requests and responses will be represented as a
strin ISO 8601 format, like:2008-09-15T15:53:00+05:00.
- A Python
datetime.date:- Python
datetime.date. - In requests and responses will be represented as a
strin ISO 8601 format, like:2008-09-15.
- Python
datetime.time:- A Python
datetime.time. - In requests and responses will be represented as a
strin ISO 8601 format, like:14:23:55.003.
- A Python
datetime.timedelta:- A Python
datetime.timedelta. - In requests and responses will be represented as a
floatof total seconds. - Pydantic also allows representing it as a "ISO 8601 time diff encoding",see the docs for more info.
- A Python
frozenset:- In requests and responses, treated the same as a
set:- In requests, a list will be read, eliminating duplicates and converting it to a
set. - In responses, the
setwill be converted to alist. - The generated schema will specify that the
setvalues are unique (using JSON Schema'suniqueItems).
- In requests, a list will be read, eliminating duplicates and converting it to a
- In requests and responses, treated the same as a
bytes:- Standard Python
bytes. - In requests and responses will be treated as
str. - The generated schema will specify that it's a
strwithbinary"format".
- Standard Python
Decimal:- Standard Python
Decimal. - In requests and responses, handled the same as a
float.
- Standard Python
- You can check all the valid Pydantic data types here:Pydantic data types.
Example¶
Here's an examplepath operation with parameters using some of the above types.
fromdatetimeimportdatetime,time,timedeltafromtypingimportAnnotatedfromuuidimportUUIDfromfastapiimportBody,FastAPIapp=FastAPI()@app.put("/items/{item_id}")asyncdefread_items(item_id:UUID,start_datetime:Annotated[datetime,Body()],end_datetime:Annotated[datetime,Body()],process_after:Annotated[timedelta,Body()],repeat_at:Annotated[time|None,Body()]=None,):start_process=start_datetime+process_afterduration=end_datetime-start_processreturn{"item_id":item_id,"start_datetime":start_datetime,"end_datetime":end_datetime,"process_after":process_after,"repeat_at":repeat_at,"start_process":start_process,"duration":duration,}🤓 Other versions and variants
Tip
Prefer to use theAnnotated version if possible.
fromdatetimeimportdatetime,time,timedeltafromuuidimportUUIDfromfastapiimportBody,FastAPIapp=FastAPI()@app.put("/items/{item_id}")asyncdefread_items(item_id:UUID,start_datetime:datetime=Body(),end_datetime:datetime=Body(),process_after:timedelta=Body(),repeat_at:time|None=Body(default=None),):start_process=start_datetime+process_afterduration=end_datetime-start_processreturn{"item_id":item_id,"start_datetime":start_datetime,"end_datetime":end_datetime,"process_after":process_after,"repeat_at":repeat_at,"start_process":start_process,"duration":duration,}Note that the parameters inside the function have their natural data type, and you can, for example, perform normal date manipulations, like:
fromdatetimeimportdatetime,time,timedeltafromtypingimportAnnotatedfromuuidimportUUIDfromfastapiimportBody,FastAPIapp=FastAPI()@app.put("/items/{item_id}")asyncdefread_items(item_id:UUID,start_datetime:Annotated[datetime,Body()],end_datetime:Annotated[datetime,Body()],process_after:Annotated[timedelta,Body()],repeat_at:Annotated[time|None,Body()]=None,):start_process=start_datetime+process_afterduration=end_datetime-start_processreturn{"item_id":item_id,"start_datetime":start_datetime,"end_datetime":end_datetime,"process_after":process_after,"repeat_at":repeat_at,"start_process":start_process,"duration":duration,}🤓 Other versions and variants
Tip
Prefer to use theAnnotated version if possible.
fromdatetimeimportdatetime,time,timedeltafromuuidimportUUIDfromfastapiimportBody,FastAPIapp=FastAPI()@app.put("/items/{item_id}")asyncdefread_items(item_id:UUID,start_datetime:datetime=Body(),end_datetime:datetime=Body(),process_after:timedelta=Body(),repeat_at:time|None=Body(default=None),):start_process=start_datetime+process_afterduration=end_datetime-start_processreturn{"item_id":item_id,"start_datetime":start_datetime,"end_datetime":end_datetime,"process_after":process_after,"repeat_at":repeat_at,"start_process":start_process,"duration":duration,}






