Esfera bat Esfera zer den ulertzeko bideoa.Bideo hau Jakindun elkarteak egin du. Gehiago dituzu eskuragarrieuren gunean. Bideoak dituzten artikulu guztiak ikus ditzakezuhemen.3D irudia
Esfera (grezieratik: σφαίρα -sphaira, "globoa, baloia") hiru dimentsioko espazioan puntu jakin batetik distantzia berera dauden espazioko puntu guztiek osatzen duten azalera da. Era berean,zirkulu bat bereardatzaren inguruan biratzen denean sortzen dengorputz geometrikoa ere bada. Alde guztietatik begiratuta, esfera gorputz erabatbiribila da.
Esferaren gainazalean dagoen puntu bat aurkitzeko, egokiagoa dakoordenatu esferikoak erabiltzeakoordenatu kartesiarrak baino, honako arrazoiengatik: batetik, azalera esferikoa bi dimentsioko espazioa delako eta koordenatu kartesiarrak hiru koordenatuetan banatzen direlako; bestetik, esfera batean lan egitean,angeluen terminoa erabiltzea egokiagoa delako, koordenatuortogonalak erabiltzea baino.
Koordenatu esferikoen bi jatorri ortogonalak kalkulatzeko, ekuatore bat eta horren puntu bat angelu horizontalen abiapuntu gisa aukeratzen dira. Lehenik eta behin, angeluaren ikurra definitzeko, ekuatorearen orientazio bat hautatzen da. Ondoren, angeluaren ikurra definitzeko, esferaren bi poloetatik polo bakarra aukeratzen da. Poloak esferaren ekuatoretik urrutien dauden puntuak dira, eta esfera batek, hain zuzen, bi polo ditu.
eta angeluek esferaren puntu guztiak mugatzen dituzte. Plano horizontaleko (ekuatorearen planoa) eta plano bertikaleko angeluei esker esferaren edozein puntu aurki daiteke.
Geometrian etageografian eta angeluak modu ezberdinetan neurtzen dira. Normaleanarku-luzera kalkulatu ahal izateko, geometrian, angelu horiekradianetan neurtzen dira. Geografian, aldiz,gradu sexagesimalak edoehundarrak erabiltzen dira angeluak lortzeko. Geografiaren kasuan, puntuak angeluen bidez zehazteko, jatorriakGreenwich-eko meridianoaren ekuatoreko puntuan eta Ipar poloko puntuan hartzen dira; era horretan, angelualatitudea dela lortzen da, eta angelua,longitudea.
Koordenatu esferikoekin espazioko edozein puntu aurkitu ahal izateko, izeneko hirugarren parametroa sartu behar da; esferaren erradioa da.
koordenatu esferikoen bitartez, espazioko edozein puntu aurkitu daiteke. Hori kontuan hartuta,koordenatu kartesiarrak koordenatu esferikoen bidez adieraz daitezke. Honako eran adierazten dira:
, non eta diren.
Koordenatu kartesiarretatik abiatuta, koordenatu esferikoak lortzen dira:
Hiru dimentsioko espazio euklidear batekokoordenatu kartesiarreko sistema batean, esfera unitarioaren (erradioa duen esferaren) ekuazioa honakoa da:
.
Jarraian azalduko da nola lortzen den aurreko ekuazioa.
Izan bitez esferarenjatorria eta esferaren edozein puntu. Lehenengo elementua baten bidez adieraziko da, eta bigarren elementua, aldiz, baten bidez. Esferaren puntuanbektore normalak balioa duela jota, hasierako formula lortzen da.
Formula hori orokortzeko, demagun esferaren jatorria dela. Hortaz,
.
Bestalde, puntuanplano tangentearen ekuazioa aldagai-banaketaren bitartez lortzen da. Esfera unitarioaren kasuan, jatorria da:
.
Formula hori orokortzeko, demagun esferaren jatorria dela. Beraz,
Esfera baten bolumena esfera horretanzirkunskribatutakozilindroaren bolumenaren dela esan daiteke. Kontuan izanda zilindroaren oinarria esferak duendiametro bereko zirkulu bat dela eta altuerak aipatutako diametroaren neurri bera duela, ondorengoa adieraz daiteke:
.
Adierazitako bolumenen arteko erlazioaArkimedesek frogatu zuen.
Bestalde, posible da esferaren bolumena kalkulatzea erabili gabe, horrenerrore-marjinakoa izanik.
Arkimedesek[4] formula lortu zuenzilindrozirkunskribatuaren alboko gainazalerako proiekzioak eremua mantentzen duela kontuan hartuz. Dena den, azaleraren formula beste era batera lor daiteke: bolumenaren formula-rekikoderibatuz.
Edozein erradio emanda, bolumen graduala erradiodun azaleraren eta egituraren lodieraren arteko biderkadurarena bezalakoa da.
.
Egituren arteko bolumen guztien gehiketa esferaren bolumenaren totala da.
Aldiz, beste zenbait gorputzak esfera mozteanzirkuluak ere sortzen dituzte:
Biraketa-gainazal baten eta esfera baten arteko ebakidura ez hutsak zirkuluez edota puntuez osatuta daude.
Irudian ikus daitekeenez, zilindroa eta esfera ebakitzen direnean, bi zirkulu sortzen direla. Zilindroak eta esferak erradio bera badute eta haien artean tangenteak badira zirkulu bakarra sortzen da.
Esfera bat beste gainazal batekin ebakitzean, kurba esferiko konplexuagoak sortu daitezke.
Adibidea: esfera eta zilindroa
Esferaren eta zilindroaren arteko ebaketen emaitzak ekuazioen arteko sistema eginez lortzen dira eta ez dira beti bi zirkulu edo zirkulu bakarra izan behar.
Esferaren ekuazioa: .
Zilindroaren ekuazioa:.
Esfera baten hemisferioak eta esferaerdiak.Esfera baten ziri-gainazala eta horren azalera kalkulatzeko parametroak.Esfera baten ziria, kalota eta esfera-zona.
Geometry and the Imagination liburuan[7]David Hilbertek etaStephan Cohn-Vossenek esferaren hamaika propietate deskribatzen dituzte, eta eztabaidatzen dute ea hamaika propietate horiek esfera modu bakarrean zehazten duten edo ez. Hamaika propietate horiek ondorengoak dira:
1. Esferaren puntu guztiak puntu finko batekiko distantzia berera daude. Gainera, bere puntuetatik bi puntu finkoetara dagoen distantziaren ratioa konstantea da.
2. Esferarenperimetroak eta sekzio lauak zirkuluak dira.
7. Bolumena duten gorputz guztietatik esfera da gainazal txikiena duen gorputza, eta gainazala duten gorputz guztietatik esfera da bolumen handiena duen gorputza.
8. Esfera, gainazal zehatza duten gorputz ganbil guztietatik, batez besteko kurbadura txikiena duen gorputza da.
9. Esferak batez besteko kurbadura konstantea du.
10. Esferak Gaussen kurbadura positiboa eta konstantea du.
11. Esfera bere baitan transformatzen da hiru parametroetako familia zurrun baten higiduraren bidez.