Lateoría de la relatividad especial, también llamadateoría de la relatividad restringida, es una teoría de la física publicada en 1905 porAlbert Einstein.[1] Surge de la observación de que la velocidad de la luz en el vacío es igual en todos lossistemas de referencia inerciales y de obtener todas las consecuencias delprincipio de relatividad de Galileo. Según él, cualquier experimento realizado en un sistema de referencia inercial se desarrollará de manera idéntica en cualquier otro sistema inercial.
La teoría se denomina "especial" ya que solo se aplica en el caso particular en el que la curvatura delespacio-tiempo producida por acción de lagravedad se puede ignorar, es decir, en esta teoría no se tiene en cuenta la gravedad como variable.[2][3] Con el fin de incluir la gravedad, Einstein formuló la teoría de larelatividad general en 1915. La relatividad general es capaz de manejarsistemas de referencia acelerados, algo que no era posible con las teorías anteriores.[4]
A finales del siglo XIX los físicos pensaban que lamecánica clásica deNewton, basada en la llamadarelatividad de Galileo Galilei (origen de las ecuaciones matemáticas conocidas comotransformaciones de Galileo), describía los conceptos de velocidad y fuerza para todos los observadores (osistemas de referencia). Sin embargo,Hendrik Lorentz y un poco antesWoldemar Voigt habían comprobado que lasecuaciones de Maxwell, que gobiernan elelectromagnetismo, no cumplían las transformaciones de Galileo cuando el sistema de referencia inercial varía (por ejemplo, cuando se considera el mismo problema físico desde el punto de vista de dos observadores que se mueven uno respecto del otro). En particular las ecuaciones de Maxwell parecían requerir que la velocidad de la luz fuera constante (razón por la que se interpretó que esa velocidad se refería a la velocidad de la luz respecto aléter). Sin embargo, elexperimento de Michelson y Morley sirvió para confirmar que lavelocidad de la luz permanecía constante para cualquier velocidad y movimiento relativo al supuesto éter omnipresente y, además, independientemente del sistema de referencia en el cual se medía (contrariamente a lo esperado de aplicar las transformaciones de Galileo) .[6] Por tanto la hipótesis del éter quedaba descartada y se abría un problema teórico grave asociado a las transformaciones de Galileo. Hendrik Lorentz ya había encontrado que las transformaciones correctas que garantizaban la invariancia no eran las de Galileo, sino las que actualmente se conocen comotransformaciones de Lorentz.
Durante años las transformaciones de Lorentz y los trabajos deHenri Poincaré sobre el tema quedaron inexplicados hasta queAlbert Einstein, un físico desconocido hasta 1905, sería capaz de darles una interpretación considerando el carácter relativo deltiempo y elespacio. Einstein también había sido influido por el físico y filósofoErnst Mach.[7] Einstein leyó a Ernst Mach cuando era estudiante y ya era seguidor suyo en 1902, cuando vivía enZúrich y se reunía regularmente con sus amigos Conrad Habicht y Maurice Solovine (VéaseAcademia Olimpia).[8] Einstein insistió para que el grupo leyese los dos libros que Mach había publicado hasta esa fecha:El desarrollo de la mecánica (título original,Die Mechanik in ihrer Entwicklung, Leipzig, 1883) yEl análisis de las sensaciones (Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen, Jena, 1886).[7] Einstein siempre creyó que Mach había estado en el camino correcto para descubrir la relatividad en parte de sus trabajos de juventud, y que la única razón por la que no lo había hecho fue porque la época no fue la propicia.[9] El artículo de 1905 de Einstein, tituladoZur Elektrodynamik bewegter Körper,[1] cambió radicalmente la percepción del espacio y el tiempo que se tenía en ese entonces. En ese artículo Einstein introducía lo que ahora conocemos comoteoría de la relatividad especial. Esta teoría se basaba en elprincipio de relatividad y en la constancia de la velocidad de la luz en cualquier sistema de referencia inercial. De ello Einstein dedujo las ecuaciones de Lorentz. También reescribió las relaciones delmomento y de laenergía cinética para que estas también se mantuvieran invariantes.
La teoría permitió establecer laequivalencia entre masa y energía y una nueva definición delespacio-tiempo. De ella se derivaron predicciones y surgieron curiosidades. Como ejemplos, un observador atribuye a un cuerpo enmovimiento una longitud más corta que la que tiene el cuerpo en reposo y la duración de los eventos que afecten al cuerpo en movimiento son más largos con respecto al mismo evento medido por un observador en el sistema de referencia del cuerpo en reposo.
En 1912,Wilhelm Wien,premio Nobel de Física de 1911, propuso a Lorentz y a Einstein para este galardón por la teoría de la relatividad, expresando
Aunque Lorentz debe ser considerado como el primero en encontrar la expresión matemática del principio de la relatividad, Einstein consiguió reducirlo desde un principio simple. Debemos pues considerar el mérito de los dos investigadores como comparable.
Einstein no recibió el premio Nobel por la relatividad especial pues el comité, en principio, no otorgaba el premio a teorías puras. El Nobel no llegó hasta 1921, y fue por su trabajo sobre elefecto fotoeléctrico.[11]
Velocidad de la luz desde laTierra a laLuna, situada a más de 380.000 km.
Primerpostulado.Principio especial de relatividad: Las leyes de lafísica son las mismas en todos lossistemas de referencia inerciales. En otras palabras, no existe un sistema inercial de referencia privilegiado, que se pueda considerar como absoluto.
La fuerza del argumento de Einstein está en la forma en que se deducen de ella resultados sorprendentes y plausibles a partir de dos simpleshipótesis y cómo estas predicciones las confirmaron las observaciones experimentales.[5] Matemáticamente hablando, en ambos postulados, tomados en conjunto, implicaban que cualquier ley física debía ser invariante respecto a una transformación de Lorentz. Es decir, que en todos los sistemas inerciales la forma matemática de las ecuaciones debía serforminvariante de Lorentz.
Cuando se aplican estos dos principios a lasecuaciones de Maxwell se ve que estas solo son invariantes bajo lastransformaciones de Lorentz, lo que implica que el intervalo de tiempo entre dos sucesos o la distancia entre dos puntos deben ser relativos al observador. Es decir, no todos los observadores medirán el mismointervalo de tiempo entre dos sucesos o la misma longitud para un mismo objeto. Ese carácter no absoluto, sino relativo del espacio y el tiempo, que es una consecuencia de requerir que las medidas tomadas por diferentes observadores dejen invariantes las ecuaciones de Maxwell es la fuente de todos los resultados sorprendentes de la teoría de la relatividad. Cuando se examinan las leyes de Newton y otras leyes del movimiento de la mecánica clásica se aprecia que estas deben ser modificadas para ser también invariantes según las mismas transformaciones que las ecuaciones de Maxwell.
Henri Poincaré, matemático francés, sugirió a finales del siglo XIX que el principio de relatividad establecido desde Galileo (lainvariancia galileana) se mantiene para todas las leyes de la naturaleza.Joseph Larmor yHendrik Lorentz descubrieron que lasecuaciones de Maxwell, la piedra angular delelectromagnetismo, eran invariantes solo por una variación en el tiempo y una cierta unidad longitudinal, lo que produjo mucha confusión en los físicos, que en aquel tiempo estaban tratando de argumentar las bases de la teoría deléter, la hipotética substancia sutil que llenaba el vacío y en la que se transmitía la luz. El problema es que este éter era incompatible con el principio de relatividad.
En su publicación de 1905 enelectrodinámica,Albert Einstein explicó que, con las transformaciones hechas por Lorentz, este principio se mantenía perfectamenteinvariable. La contribución de Einstein fue el elevar esteaxioma aprincipio y proponer lastransformaciones de Lorentz como primer principio. Además descartó la noción de tiempo absoluto y requirió que lavelocidad de la luz en elvacío sea la misma para todos los observadores, sin importar si estos se movían o no. Esto era fundamental para las ecuaciones de Maxwell, ya que estas necesitan de una invarianza general de la velocidad de la luz en el vacío.
La teoría de la relatividad especial además busca formular todas las leyes físicas de forma que tengan validez para todos los observadores inerciales. Por lo que cualquier ley física debería tener una forma matemática invariante bajo unastransformaciones de Lorentz.
Como se ha mencionado, los físicos de la época habían encontrado una inconsistencia entre la completa descripción delelectromagnetismo realizada porMaxwell y lamecánica clásica. Para ellos, laluz era unaonda electromagnética transversal que se movía por un sistema de referencia privilegiado, al cual lo denominabanéter.
Hendrik Antoon Lorentz trabajó en resolver este problema y fue desarrollando unas transformaciones para las cuales lasecuaciones de Maxwell quedaban invariantes y sin necesidad de utilizar ese hipotético éter. La propuesta de Lorentz de 1899, conocida como laTeoría electrónica de Lorentz, no excluía —sin embargo— al éter. En la misma, Lorentz proponía que la interacción eléctrica entre dos cuerpos cargados se realizaba por medio de unos corpúsculos a los que llamaba electrones y que se encontraban adheridos a la masa en cada uno de los cuerpos. Estos electrones interactuaban entre sí mediante el éter, el cual era contraído por los electrones acorde a transformaciones específicas, mientras estos se encontraban en movimiento relativo al mismo. Estas transformaciones se las conoce ahora comotransformaciones de Lorentz. La formulación actual fue trabajo dePoincaré, el cual las presentó de una manera más consistente en 1905.
Se tiene un sistema S de coordenadas y un sistema S' de coordenadas, de aquí las ecuaciones que describen la transformación de un sistema a otro son:
Contrario a nuestro conocimiento actual, en aquel momento esto era una completa revolución, debido a que se planteaba una ecuación para transformar al tiempo, cosa que para la época era imposible. En lamecánica clásica, el tiempo era un invariante. Y para que las mismas leyes se puedan aplicar en cualquier sistema de referencia se obtiene otro tipo de invariante a grandes velocidades (ahora llamadas relativistas), la velocidad de la luz.
Directamente de los postulados expuestos arriba, y por supuesto de las transformaciones de Lorentz, se deduce el hecho de que no se puede decir consentido absoluto que dos acontecimientos hayan ocurrido al mismotiempo en diferenteslugares. Si dos sucesos ocurren simultáneamente en lugares separados espacialmente desde el punto de vista de un observador, cualquier otro observador inercial que se mueva respecto al primero los presencia en instantes distintos.[13]
Dos eventos simultáneos verifican, pero si sucedieron en lugares distintos (con), otro observador con movimiento relativo obtiene. Solo en el caso y (sucesos simultáneosen el mismo punto) no ocurre esto.
El concepto de simultaneidad puede definirse como sigue. Dados dos eventos puntualesE1 yE2, que ocurre respectivamente en instantes de tiempot1 yt2, y en puntos del espacioP1 = (x1,y1,z1) yP2 = (x2,y2,z2), todas las teorías físicas admiten que estos solo pueden darse una, de tres posibilidades mutuamente excluyentes:[14]
Es posible para unobservador estar presente en el eventoE1 y luego estar en el eventoE2, y en ese caso se afirma queE1 es un evento anterior aE2. Además si eso sucede no puede existir otro observador que verifique 2.
Es posible para un observador estar presente en el eventoE2 y luego estar en el eventoE1, y en ese caso se afirma queE1 es un evento posterior aE2. Además si eso sucede no puede existir otro observador que verifique 1.
Es imposible para algún observador puntual, estar presente simultáneamente en los eventosE1 yE2.
Dado un evento cualquiera, el conjunto de eventos puede dividirse según esas tres categorías anteriores. Es decir, todas las teorías físicas permiten fijado un evento, clasificar a los demás eventos: en (1) pasado, (2) futuro y (3) resto de eventos (ni pasados ni futuros). En mecánica clásica esta última categoría está formada por los sucesos llamados simultáneos, y en mecánica relativista eventos no relacionados causalmente con el primer evento. Sin embargo, la mecánica clásica y la mecánica relativista difieren en el modo concreto en que esa división entre pasado, futuro y otros puede hacerse y en si dicho carácter es absoluto o relativo de dicha partición.
Dilatación del tiempo y contracción de la longitud
Como se dijo previamente, eltiempo en esta teoría deja de ser absoluto como se proponía en lamecánica clásica. O sea, el tiempo para todos los observadores del fenómeno deja de ser el mismo. Si tenemos unobservador inmóvil haciendo una medición del tiempo de un acontecimiento y otro que se mueva a velocidades relativistas (cercanas a la de la luz), los dos relojes no tendrán la misma medición de tiempo.
Mediante latransformación de Lorentz nuevamente llegamos a comprobar esto. Se coloca unreloj ligado al sistema S y otro al S', lo que nos indica que. Se tiene las transformaciones y sus inversas en términos de la diferencia de coordenadas:
De lo que obtenemos que los eventos que se realicen en el sistema en movimiento S' serán más largos que los del S. La relación entre ambos es esa. Este fenómeno se lo conoce comodilación del tiempo.
Si se dice que eltiempo varía avelocidades relativistas, lalongitud también lo hace. Un ejemplo sería si tenemos a dos observadores inicialmente inmóviles, estos miden un vehículo en el cual solo uno de ellos "viajará" a grandes velocidades, ambos obtendrán el mismo resultado. Uno de ellos entra al vehículo y cuando adquiera la suficiente velocidad mide el vehículo obteniendo el resultado esperado, pero si el que esta inmóvil lo vuelve a medir, obtendrá un valor menor. Esto se debe a que la longitud también secontrae.
Volviendo a las ecuaciones de Lorentz, despejando ahora ax y condicionando a se obtiene:
de lo cual podemos ver que existirá una disminución debido al cociente. Estos efectos solo pueden verse a grandes velocidades, por lo que en nuestra vida cotidiana las conclusiones obtenidas a partir de estos cálculos no tienen mucho sentido.
Un buen ejemplo de estas contracciones y dilataciones fue propuesto por Einstein en suparadoja de los gemelos, y verificado experimentalmente por la anomalía en el tiempo de vida de losmuones, producidos por losrayos cósmicos.[15]
El pájaro se mueve con velocidadv respecto al suelo (sistemaS). Sin embargo, desde el punto de vista del piloto del avión (sistemaS´ que se desplaza a velocidadu), el pájaro se aleja de él a una velocidadv′ mayor, dada por las fórmulas del texto (nótese que la velocidadu es negativa, siv es positiva).
La composición de velocidades es el cambio en la velocidad de un cuerpo al ser medida en diferentes sistemas de referencia inerciales. En la física pre-relativista se calculaba mediante
,
dondev′ es la velocidad del cuerpo con respecto al sistemaS′,u la velocidad con la que este sistema se aleja del sistema "en reposo"S, yv es la velocidad del cuerpo medida enS.
Sin embargo, debido a las modificaciones del espacio y el tiempo, esta relación no es válida en Relatividad Especial. Mediante lastransformaciones de Lorentz puede obtenerse la fórmula correcta:
Al observar con cuidado esta fórmula se nota que si tomamos para el cuerpo una velocidad en el sistemaS igual a la de la luz (el caso de unfotón, por ejemplo), su velocidad enS′ sigue siendov′=c, como se espera debido alsegundo postulado. Además, si las velocidades son muy pequeñas en comparación con la luz, se obtiene que esta fórmula se aproxima a la anterior dada porGalileo.
El concepto demasa en la teoría de la relatividad especial tiene dos bifurcaciones: la masa invariante y la masa relativista aparente. La masa relativista aparente es la masa aparente que va a depender delobservador y se puede incrementar dependiendo de su velocidad, mientras que la invariante es independiente del observador e invariante.
Matemáticamente tenemos que: donde es la masa relativista aparente, es la invariante y es elfactor de Lorentz. Notemos que si lavelocidad relativa del factor de Lorentz es muy baja, la masa relativa tiene el mismo valor que la masa invariante pero si esta es comparable con lavelocidad de la luz existe una variación entre ambas. Conforme la velocidad se vaya aproximando a la velocidad de la luz, la masa relativista tenderá a infinito.
Al existir una variación en la masa relativista aparente, lacantidad de movimiento de un cuerpo también debe ser redefinida. SegúnNewton, la cantidad de movimiento está definida por donde era la masa del cuerpo. Como esta masa ya no es invariante, nuestra nueva "cantidad de movimiento relativista" tiene el factor de Lorentz incluido así:
Sus consecuencias las veremos con más detenimiento en la sección posterior de fuerza.
La relatividad especial postula una ecuación para la energía, la cual llegó a ser la ecuación más famosa del planeta,E =mc2. A esta ecuación también se la conoce como laequivalencia entre masa y energía. En la relatividad, la energía y el momento de una partícula están relacionados mediante la ecuación:
Estarelación de energía-momento formulada en la relatividad nos permite observar la independencia del observador tanto de la energía como de la cantidad de momento. Para velocidades no relativistas, la energía puede ser aproximada mediante una expansión de unaserie de Taylor así
encontrando así laenergía cinética de la mecánica de Newton. Lo que nos indica que esa mecánica no era más que un caso particular de la actual relatividad. El primer término de esta aproximación es lo que se conoce como laenergía en reposo (energía potencial), esta es la cantidad de energía que puede medir un observador en reposo de acuerdo con lo postulado porEinstein. Esta energía en reposo no causaba conflicto con lo establecido anteriormente por Newton, porque esta es constante y además persiste la energía en movimiento. Einstein lo describió de esta manera:
Bajo esta teoría, la masa ya no es una magnitud inalterable pero sí una magnitud dependiente de (y asimismo, idéntica con) la cantidad de energía.[16]
Enmecánica newtoniana lafuerza no relativista puede obtenerse simplemente como la derivada temporal del momento lineal:
,
Pero contrariamente postula la mecánica newtoniana, aquí elmomento no es simplemente la masa en reposo por la velocidad. Por lo que la ecuación ya no es válida en relatividad. Si introducimos la definición correcta del momento lineal, usando la masa aparente relativista entonces obtenemos la expresión relativista correcta:
donde es la masa relativista aparente. Calculando la fuerza anterior se observa el hecho que la fuerza podría no tener necesariamente la dirección de laaceleración, como se deduce desarrollando la ecuación anterior:
La relatividad especial usatensores ycuadrivectores para representar unespacio pseudo-euclídeo. Este espacio, sin embargo, es similar alespacio euclídeo tridimensional en muchos aspectos y es relativamente fácil trabajar en él. Eltensor métrico que da la distancia elemental (ds) en un espacio euclídeo se define como:
donde son diferenciales de las tres coordenadas cartesianas espaciales. En la geometría de la relatividad especial, se añade una cuarta dimensión imaginaria dada por el productoict, dondet es eltiempo,c la velocidad de la luz ei la unidad imaginaria: quedando el intervalo relativista, en forma diferencial, como:
El factor imaginario se introduce para mostrar el carácter pseudoeuclídeo de la geometría espacio-tiemporal. Si se reducen las dimensiones espaciales a 2, se puede hacer una representación física en un espacio tridimensional,
Cono dual.
Se puede ver que lasgeodésicas con medida cero forman uncono dual definido por la ecuación
La ecuación anterior es la de círculo con. Si se extiende lo anterior a las tres dimensiones espaciales, las geodésicas nulas son esferas concéntricas, con radio = distancia = c por tiempo.
Esferas concéntricas.
Este doble cono de distancias nulas representa elhorizonte de visión de un punto en el espacio. Esto es, cuando se mira a las estrellas y se dice:La estrella de la que estoy recibiendo luz tiene X años, se está viendo a través de esa línea de visión: una geodésica de distancia nula. Se está viendo un suceso a metros, y segundos en el pasado. Por esta razón, el doble cono es también conocido comocono de luz (El punto inferior de la izquierda del diagrama inferior representa la estrella, el origen representa el observador y la línea representa la geodésica nula, el "horizonte de visión" ocono de luz). Es importante notar que solo los puntos interiores al cono de luz de un evento pueden estar en relacióncausal con ese evento.
Imposibilidad de movimientos más rápidos que la luz
Asumiendo elprincipio de causalidad e ignorando ciertas posibilidades relacionadas con elmovimiento superlumínico, obtenemos que ninguna partícula de masa positiva en reposo puede viajar más rápido que la luz. En particular, la relación entre la energía cinéticaK necesaria para acelerar rectilíneamente una partícula desde el reposo hasta una cierta velocidadv viene expresada por la ecuación:
Aquí puede verse claramente que para cualquier valor finito deK se cumplirá quev <c. Otra manera de ver esta imposibilidad es usar el principio de causalidad, y aplicarlo almovimiento más rápido que el de la luz. Imagínese un cuerpo que experimenta una fuerza durante una cantidad infinita de tiempo. Tenemos entonces que para un movimiento rectilíneo:
De la expresión anterior se deduce que la "inercia efectiva", entendida como la resistencia que opone el cuerpo a ser aceleradoF / a, irá aumentando indefinidamente a medida quev se acerca ac.
Por otra parte, esta conclusión depende críticamente de la asunción de causalidad. Así enmecánica cuántica esta asunción no se considera, por lo que algunaspartículas virtuales no están sujetas a esa restricción. Además existen propuestas teóricas que postulan la existencia de partículas hipotéticas que podrían viajar más rápido que la luz, lostaquiones, naturalmente en esas teorías no se asume el principio de causalidad en la forma planteada aquí.
La relatividad especial a pesar de poder ser descrita con facilidad por medio de lamecánica clásica y ser de fácil entendimiento, tiene una compleja matemática de por medio. Aquí se describe a la relatividad especial en la forma de lacovariancia de Lorentz. La posición de un evento en elespacio-tiempo está dado por un vectorcontravariante cuatridimensional, sus componentes son:
esto es que,, y. Los superíndices de esta sección describen contravarianza y no exponente a menos que sea un cuadrado o se diga lo contrario. Los superíndices son índicescovariantes que tienen un rango de cero a tres como un gradiente del espacio tiempo del campo φ:
Habiendo reconocido la naturaleza cuatridimensional delespacio-tiempo, se puede empezar a emplear lamétrica de Minkowski, η, dada en los componentes (válidos para cualquier sistema de referencia) así:
que es simplemente la matriz de unboost (como una rotación) entre las coordenadasx yt. Donde μ' indica la fila y ν la columna. También β y γ están definidos como:
Más generalmente, una transformación de un sistema inercial (ignorando la translación para simplificarlo) a otro debe satisfacer:
Todas las propiedades físicas cuantitativas son dadas por tensores. Así para transformar de un sistema a otro, se usa la muy conocidaley de transformación tensorial
donde es la matriz inversa de. Para observar como esto es útil, transformamos laposición de un evento de un sistema de coordenadasS a unoS', se calcula
que son las transformaciones de Lorentz dadas anteriormente. Todas las transformaciones de tensores siguen la misma regla. El cuadrado de la diferencia de la longitud de la posición del vector construido usando
es uninvariante. Ser invariante significa que toma el mismo valor en todos los sistemas inerciales porque es unescalar (tensor de rango 0), y así Λ no aparece en esta transformación trivial. Se nota que cuando el elemento línea es negativo es el diferencial deltiempo propio, mientras que cuando es positivo, es el diferencial de ladistancia propia.
El principal valor de expresar las ecuaciones de la física en forma tensorial es que estas son luego manifestaciones invariantes bajo los grupos de Poincaré, así que no tenemos que hacer cálculos tediosos o especiales para confirmar ese hecho. También al construir tales ecuaciones encontramos usualmente que ecuaciones previas que no tienen relación, de hecho, están conectadas cercanamente al ser parte de la misma ecuación tensorial.
Ahora podemos definir igualmente lavelocidad y laaceleración mediante simples leyes de transformación. La velocidad en el espacio-tiempoUμ está dada por
Reconociendo esto, podemos convertir buscando una ley sobre las composiciones de velocidades en un simple estado acerca de transformaciones de velocidades de cuatro dimensiones de unapartícula de un sistema a otro.Uμ también tiene una forma invariante:
Así lacuadrivelocidad tiene una magnitud dec. Esta es una expresión del hecho que no hay tal cosa como lacoordenada en reposo en relatividad: al menos, si se está siempre moviéndose a través deltiempo. Para lacuadriaceleración, esta viene dada por. Dado esto, diferenciando la ecuación paraτ produce
así en relatividad, la aceleración y la velocidad en elespacio-tiempo son ortogonales.
Podemos trabajar con que este es un invariante por el argumento de que este es primero un escalar, no interesa qué sistema de referencia se calcule y si la transformamos a un sistema donde el momento total sea cero.
Se observa que laenergía en reposo es un invariante independiente. Una energía en reposo se puede calcular para partículas y sistemas en movimiento, portraslación de un sistema en que el momento es cero. La energía en reposo está relacionada con la masa de acuerdo con la ecuación antes discutida:
Nótese que la masa de un conjunto de masas medida en su sistema de centro de masas (donde el momento total es cero) está dado por su energía total en ese dicho sistema de referencia. No debería ser igual a la suma de masas individuales medida en otros sistemas.
Al usar la terceraley de Newton, ambasfuerzas deben estar definidas como la tasa de cambio delmomentum respecto al mismo tiempo coordenado. Esto es, se requiere de las fuerzas definidas anteriormente. Desafortunadamente, no hay untensor en cuatro dimensiones que contenga las componentes de un vector de fuerza en tres dimensiones entre sus componentes.
Si unapartícula no está viajando ac, se puede transformar en una fuerza de tres dimensiones delsistema de referencia de la partícula en movimiento entre los observadores de este sistema. A estos se los suele llamar fuerza de cuatro dimensiones. Es la tasa de cambio del anterior vector de cuatro dimensiones de energía momento con respecto altiempo propio. La versión covariante de esta fuerza es:
donde es el tiempo propio.
En el sistema en reposo del objeto, la componente del tiempo de esta fuerza es cero a menos que lamasa invariante del objeto este cambiando, en ese caso la tasa de cambio es negativa y esc2 veces. En general, se piensa que las componentes de la fuerza de cuatro dimensiones no son iguales a las componentes de la fuerza de tres porque esta de tres está definida por la tasa de cambio del momento con respecto al tiempo coordenado, así; mientras que la fuerza en cuatro dimensiones está definida por la tasa de cambio del momento respecto al tiempo propio, así.
En un medio continuo, ladensidad de fuerza en tres dimensiones combinada con ladensidad de potencia forma un vector de cuatro dimensiones covariante. La parte espacial es el resultado de dividir la fuerza en pequeñas células (en el espacio tridimensional) por el volumen de la célula. El componente del tiempo es negativo de la potencia transferida a la célula dividida para el volumen de la célula.
Investigaciones teóricas en elelectromagnetismo clásico indicaron el camino para descubrir lapropagación de onda. Las ecuaciones generalizando los efectos electromagnéticos encontraron que la velocidad de propagación finita de los campos E y B requiere comportamientos claros en partículas cargadas. El estudio general de cargas en movimiento forma unpotencial de Liénard-Wiechert, que es un paso a través de la relatividad especial.
Latransformación de Lorentz delcampo eléctrico de una carga en movimiento por un observador en reposo en unsistema de referencia resulta en la aparición de un término matemático comúnmente llamadocampo magnético. Al contrario, el campo magnético generado por las cargas en movimiento desaparece y se convierte en un campo electrostático en un sistema de referencia móvil. Lasecuaciones de Maxwell son entonces simplemente ajustes empíricos a los efectos de la relatividad especial en un modelo clásico del universo. Como los campos eléctricos y magnéticos son dependientes de los sistemas de referencia y así entrelazados, en el así llamadocampo electromagnético. La relatividad especial provee las reglas de transformación de cómo los campos electromagnéticos en un sistema inercial aparecen en otro sistema inercial.
Lasecuaciones de Maxwell en la forma tridimensional son de por sí consistentes con el contenido físico de la relatividad especial. Pero debemos reescribirlas para hacerlas invariantes.[17] Ladensidad de carga y ladensidad de corriente son unificadas en el concepto de vector cuatridimensional:
A pesar de que se ven muchas ecuaciones, estas se pueden reducir a solo cuatro ecuaciones independientes. Usando la antisimetría del campo electromagnético se puede reducir a la identidad o redundar en todas las ecuaciones excepto las que λ, μ, ν = 1,2,3 o 2,3,0 o 3,0,1 o 0,1,2.
Existe cierta confusión sobre los límites de la teoría especial de la relatividad. Por ejemplo, con frecuencia en textos de divulgación se repite que dentro de esta teoría solo pueden tratarsesistemas de referencia inerciales, en los cuales lamétrica toma laforma canónica. Sin embargo, como diversos autores se han encargado de demostrar, la teoría puede tratar igualmente sistemas de referencia no inerciales.[18]
Obviamente el tratamiento de sistemas no inerciales en la teoría de la relatividad especial resulta más complicado que el de los sistemas inerciales.
Einstein y otros autores consideraron antes del desarrollo de larelatividad general casi exclusivamente sistemas de coordenadas relacionados por transformaciones de Lorentz, razón por la cual se piensa que esta teoría es solo aplicable a sistemas inerciales.
Actualmente se considera como relatividad general el estudio del espacio-tiempo deformado por campos gravitatorios, dejando el estudio de los sistemas de referencia acelerados en espacios planos dentro de la relatividad especial. Igualmente la relatividad general es una de las teorías más relevantes para la construcción de modelos cosmológicos sobre elorigen del universo.
La teoría general de la relatividad fue introducida históricamente en conexión con elprincipio de equivalencia y el intento de explicar la identidad entre lamasa inercial y lamasa gravitatoria. En esta teoría se usaban explícitamente sistemas de coordenadas no relacionados entre sí por transformaciones de Lorentz o similares, con lo cual claramente en la resolución de muchos problemas se hacía patente el uso de sistemas de referencia no inerciales. Estos hechos condujeron a la confusión en muchos textos de divulgación de que los sistemas no inerciales requieren del desarrollo de la teoría general de la relatividad.
↑abEinstein, A. (1905).IV. Folge(PDF). «Zur Elektrodynamik bewegter Körper».Annalen der Physik(en alemán) (Berna)17: pp. 891-921. Archivado desdeel original el 29 de diciembre de 2009. Consultado el 13 de agosto de 2009.
↑Wald, General Relativity, p. 60: "...the special theory of relativity asserts that spacetime is the manifold ℝ4 with a flat metric of Lorentz signature defined on it. Conversely, the entire content of special relativity ... is contained in this statement ..."
↑Rindler, W., 1969, Essential Relativity: Special, General, and Cosmological