Movatterモバイル変換


[0]ホーム

URL:


Ir al contenido
WikipediaLa enciclopedia libre
Buscar

Helio

Artículo destacado
De Wikipedia, la enciclopedia libre
Para otros usos de este término, véaseHelios (desambiguación).
Hidrógeno ← HelioLitio
 
 
2
He
 
        
        
                  
                  
                                
                                
Tabla completaTabla ampliada

Tubo de descarga lleno de helio
Información general
Nombre,símbolo,númeroHelio, He, 2
Serie químicaGases nobles
Grupo,período,bloque18,1,s
Masa atómica4.0026[1]​ u
Configuración electrónica1s2
Electrones pornivel2 (imagen)
AparienciaIncoloro. Exhibe un brillo gris y turbio (o naranja rojizo si se utiliza un voltaje especialmente alto) cuando se coloca en un campo eléctrico.
Propiedades atómicas
ElectronegatividadSin datos(escala de Pauling)
Radio atómico(calc)31 pm(radio de Bohr)
Radio covalente32 pm
Radio de van der Waals140 pm
Estado(s) de oxidación0 (desconocido)
1.ªenergía de ionización2372.3 kJ/mol
2.ªenergía de ionización5250.5 kJ/mol
Líneas espectrales
Propiedades físicas
Estado ordinarioGas
Densidad0.1785 kg/m3
Punto de fusión0,95 K (−272 °C) (a 2,5 MPa)
Punto de ebullición4,22 K (−269 °C)
Entalpía de vaporización0.0845 kJ/mol
Entalpía de fusión5.23 kJ/mol
Varios
Estructura cristalinahexagonal
Calor específico5193 J/(kg·K)
Conductividad eléctricaSin datos S/m
Conductividad térmica0.152 W/(m·K)
Velocidad del sonido970 m/s a 293,15 K (20 °C)
Isótopos más estables
Artículo principal:Isótopos del helio
isoANPeriodoMDEdPD
MeV
3He0.000137Estable con 1neutrón
4He99.999863Estable con 2neutrones
6HeSintético806.7 msβ-3.5086Li
Valores en elSI ycondiciones normales de presión y temperatura, salvo que se indique lo contrario.

Elhelio (delgriego:ἥλιος [hḗlios] ‘Sol’, por haberse inferido en 1868 su existencia en laatmósfera solar)[2]​es elelemento químico denúmero atómico2,símboloHe ypeso atómico estándar de4.002602. Pertenece algrupo 18 de latabla periódica de los elementos, ya que al tener el nivel de energía completo presenta las propiedades de ungas noble. Es decir, es en general inerte (no reacciona), aunque hay excepciones,[3]​ y al igual que estos, es un gas monoatómico incoloro e inodoro que cuenta con el menorpunto de ebullición de todos los elementos químicos y solo puede serlicuado bajo presiones muy grandes y no puede sercongelado a presión atmosférica.

Durante uneclipse solar en 1868, el astrónomofrancésPierre Janssen observó unalínea espectral amarilla en la luz solar que hasta ese momento era desconocida.Norman Lockyer observó el mismo eclipse y propuso que dicha línea era producida por un nuevo elemento, al cual llamó helio, con lo cual, tanto a Lockyer como a Janssen se les adjudicó el descubrimiento de este elemento. En 1903 se encontraron grandes reservas de helio en campos degas natural en losEstados Unidos, país con la mayor producción de helio en el mundo.

Industrialmente se usa encriogenia (siendo su principal uso, lo que representa alrededor de un 28 % de la producción mundial), en larefrigeración de imanes superconductores. Entre estos usos, la aplicación más importante es en losescáneres deresonancia magnética. También se utiliza como protección para lasoldadura por arco y otros procesos, como el crecimiento de cristales desilicio, los cuales representan el 20 % de su uso para el primer caso y el 26 % para el segundo. Otros usos menos frecuentes, aunque popularmente conocidos, son el llenado deglobos ydirigibles, o su empleo como componente de las mezclas de gases usados en elbuceo a gran profundidad.[4]​ El inhalar una pequeña cantidad de helio genera un breve cambio en la calidad y el timbre de la voz humana. En la investigación científica, el comportamiento del helio-4 en forma líquida en sus dos fases, helio I y helio II, es importante para los científicos que estudian lamecánica cuántica (en especial, el fenómeno de lasuperfluidez), así como para aquellos que desean conocer los efectos ocurridos en la materia a temperaturas cercanas alcero absoluto (como el caso de lasuperconductividad).

El helio es el segundo elemento más ligero y el segundo más abundante en eluniverso observable, constituyendo el 24 % de la masa de los elementos presentes ennuestra galaxia. Esta abundancia se encuentra en proporciones similares en elSol y enJúpiter. Por masa se encuentra en una proporción doce veces mayor a la de todos los elementos más pesados juntos. La presencia tan frecuente de helio es debida a elevadaenergía de enlace pornucleón del helio-4 con respecto a los tres elementos que le siguen en la tabla periódica (litio,berilio yboro). Esta energía da como resultado la producción frecuente de helio tanto en lafusión nuclear como en ladesintegración radioactiva. La mayor parte del helio en el universo se encuentra presente en la forma delisótopo helio-4 (4He), el cual se cree que se formó unos 15 minutos después delBig Bang. Gracias a la fusión de hidrógeno en las estrellas activas, se forma una pequeña cantidad de helio nuevo, excepto en las de mayor masa, debido a que durante las etapas finales de su vida generan su energía convirtiendo el helio en elementos más pesados. En laatmósfera de laTierra se encuentran trazas de helio debido a ladesintegración radioactiva de algunos elementos. En algunos depósitos naturales el gas se encuentra en cantidad suficiente para la explotación.

En la Tierra, la ligereza de helio ha provocado su evaporación de la nube de gas y polvo a partir de la cual se formó el planeta, por lo que es relativamente poco frecuente —con una fracción de 0.00052 por volumen— en laatmósfera terrestre. El helio presente en la Tierra hoy en día ha sido creado en su mayor parte por la desintegración radiactiva natural de los elementos radioactivos pesados (torio yuranio), debido a que laspartículas alfa emitidas en dichos procesos constan de núcleos de helio-4. Este helio radiogénico es atrapado junto con elgas natural en concentraciones de hasta el 7 % por volumen, del que se extrae comercialmente por un proceso de separación a baja temperatura llamadodestilación fraccionada.

El helio (He) es un elemento químico de número atómico 2 y un peso químico estándar de 4.0026. Pertenece al grupo de los gases nobles, situado en la columna 18 de la tabla periódica.

Características principales

[editar]

Aunque el helio tiene unaconfiguración electrónica 1s², no se coloca en el grupo 2 de latabla periódica junto alhidrógeno y otros elementos del bloque s. En su lugar, se ubica en el grupo 18, correspondiente a losgases nobles, debido a suspropiedades químicas únicas. Este elemento, al poseer su nivel de energía completamente lleno, es químicamente inerte y no forma compuestos fácilmente, características típicas de los gases nobles. Aunque su configuración lo asociaría al bloque s, su comportamiento químico lo justifica como parte del bloque p. Esto hace que el helio sea una excepción importante en la disposición de los elementos en la tabla periódica.

Encondiciones normales depresión ytemperatura (25 °C y 1 atm), el helio es ungas monoatómico, no inflamable y extremadamente ligero. Es notablemente difícil delicuar debido a su bajatemperatura crítica, que es de apenas 5.20K (−267.96°C). Esto significa que, por encima de esa temperatura, el helio no puede pasar alestado líquido, sin importar cuántapresión se le aplique. A temperaturas inferiores a la crítica, el helio solo puede licuarse mediante una combinación de enfriamiento extremo y alta presión. Este comportamiento lo convierte en un caso único entre todos loselementos químicos.

Otro aspecto fascinante del helio es su elevadocalor específico, especialmente enestado gaseoso. Este valor, más alto que el de la mayoría de los gases, hace que el helio se expanda rápidamente cuando se calienta, incluso a temperatura ambiente. En condiciones de bajas temperaturas, el helio líquido también exhibe propiedades únicas, como lasuperfluidez, una fase en la que fluye sin viscosidad, superando obstáculos sin resistencia.

El helio posee elpunto de solidificación más bajo conocido. A presiones normales, incluso en elcero absoluto (0K o −273.15°C), elhelio-4 permanece en estado líquido debido a suenergía de punto cero, un efectocuántico que impide que sus átomos se estabilicen en un estado sólido. Sin embargo, al someterlo a presiones superiores a 25atm, el helio puede solidificarse. Elhelio sólido, a temperaturas cercanas a 1K (−272.15°C), adopta unaestructura cristalina hexagonal compacta. A medida que la presión aumenta, se han observado cambios a estructuras cristalinas diferentes, aunque con densidades y energías muy similares. Estos cambios reflejan las complejas interacciones entre los átomos del helio en condiciones extremas.[5]

El átomo de helio

[editar]

El helio en la mecánica cuántica

[editar]

El helio es unelemento químico cuyo átomo es el más simple de resolver utilizando las reglas de la mecánica cuántica después del átomo de hidrógeno. Se compone de dos electrones en órbita alrededor de un núcleo que contiene dosprotones junto con uno o dosneutrones, dependiendo del isótopo. Sin embargo, como en la mecánica newtoniana, ningún sistema que consista de más de dos partículas se puede resolver con un enfoque de análisis matemático exacto (véaseproblema de los tres cuerpos) y el helio no es la excepción. Así, los métodos matemáticos son necesarios, incluso para resolver el sistema de un núcleo y dos electrones. Sin embargo, tales métodos de laquímica computacional se han utilizado para crear una imagen mecánico cuántica de las uniones de los electrones de helio con una precisión dentro de un 2 % del valor correcto, con unos pocos pasos de cálculo computacional.[6]​ En estos modelos se observa que cada electrón evita parcialmente que el otro sienta la interacción con el núcleo, de tal manera que la carga nuclear efectivaZ es de aproximadamente 1.69 unidades, y no las 2 cargas de un "núcleo desnudo" clásico de helio.

El átomo de hidrógeno se utiliza ampliamente para ayudar a resolver el átomo de helio. Elmodelo atómico de Bohr dio una explicación muy precisa del espectro del átomo de hidrógeno, pero cuando se intentó utilizar en el helio el modelo falló.Werner Heisenberg desarrolló una modificación del análisis de Bohr, en el que utilizó valores semiintegrados de losnúmeros cuánticos. Lateoría del funcional de la densidad se utiliza para obtener los niveles de energía en su estado base del átomo de helio, junto con elmétodo de Hartree-Fock.

La relativa estabilidad del núcleo del helio-4 y su capa de electrones

[editar]

El núcleo del átomo de helio-4, que es exactamente igual a unapartícula alfa,[7]​ es particularmente interesante. La razón de esto se debe a que experimentos de dispersión de electrones de alta energía han mostrado que su carga decrece de formaexponencial a partir de un máximo en su punto central, exactamente de la misma manera en que decrece ladensidad de carga en su propianube de electrones. Esta simetría refleja principios físicos similares: el par de neutrones y de protones en el núcleo del helio obedecen a las mismas reglas mecánico-cuánticas que los dos electrones que lo orbitan —aunque la unión de las partículas en el núcleo se debe a unpotencial diferente al que mantiene a los electrones en la nube alrededor del átomo—. De esta manera, estosfermiones (es decir, tanto protones como electrones y neutrones) ocupan completamente los orbitales 1s en pares, ninguno de ellos poseemomento angular orbital y cada uno de ellos cancela elespín intrínseco del otro. El añadir otra de cualquiera de estas partículas requeriría momento angular y liberaría sustancialmente menos energía (de hecho, ningún núcleo con cinconucleones es estable). Por esta razón, este arreglo para estas partículas es extremadamente estable energéticamente, y dicha estabilidad da lugar a muchos fenómenos cruciales inherentes al helio en la naturaleza.

Energía de enlace pornucleón paraisótopos comunes. En el helio, esta energía es significativamente mayor que en losnúclidos adyacentes.

Como ejemplo de estos hechos debidos a la alta estabilidad de la configuración electrónica del helio está la baja reactividad química de este elemento (la más baja de toda la tabla periódica), así como la falta de interacción de sus átomos entre ellos mismos. Esto produce lospuntos de fusión y deebullición más bajos de todos los elementos. De la misma manera, la estabilidad energética del núcleo de helio-4 da lugar a una fácil producción de estos en reacciones atómicas que involucran tanto emisión de partículas pesadas comofusión nuclear. Cierta cantidad de helio-3 estable se produce en reacciones de fusión a partir del hidrógeno, pero es una fracción mucho menor comparada con el helio-4. La estabilidad del helio-4 es la razón por la cual el hidrógeno se convierte en esta forma de helio en elSol, en vez de helio-3,deuterio u otros elementos más pesados. Asimismo es parcialmente responsable del hecho de que la partícula alfa es por mucho el tipo departícula bariónica más comúnmente expelida por los núcleos atómicos. Dicho de otra manera, ladesintegración alfa es mucho más común que la desintegración en núcleos más pesados.[8]

La inusual estabilidad del helio-4 es importante también encosmología. En los primeros minutos después delBig Bang, el universo estaba compuesto por una mezcla denucleones (protones y neutrones) libres. Esta «sopa» tenía originalmente una proporción de seis protones por cada neutrón, y después de un tiempo se enfrió al punto tal que se pudo dar la fusión nuclear.[9]​ La estabilidad del helio provocó que casi todas las agregaciones de nucleones formadas en ese momento fueran núcleos de helio-4. La unión de protones y neutrones para formar helio-4 tiene tanta fuerza que, de hecho, la producción de este elemento consumió casi todos los neutrones libres en cuestión de minutos, antes de que dichos núcleos pudieran decaer pordesintegración beta. Esto dejó una cantidad muy pequeña de estas partículas para que se pudiera formarlitio,berilio oboro. El enlace nuclear por cada nucleón en el helio-4 es más fuerte que en cualquiera de estos tres elementos (véasenucleogénesis yenergía de enlace). Por lo tanto, no había ningún mecanismo energético disponible, una vez que se hubo formado el helio, para crear los elementos de número atómico 3, 4 y 5. En términos de energía, también era favorable la fusión del helio para formar el siguiente elemento en la tabla periódica con menor energía por nucleón: elcarbono. No obstante, debido a la falta de elementos intermedios, este proceso requería la colisión casi simultánea de tres núcleos de helio-4 (véaseproceso triple-alfa), por lo que no hubo suficiente tiempo para que el carbono se formara en el Big Bang: en cuestión de minutos, el universo temprano se enfrió a una temperatura y presión en las cuales la fusión de helio a carbono ya no fue posible. Esto ocasionó que el universo temprano poseyera un cociente hidrógeno/helio muy similar al observado actualmente (en masa, tres partes de hidrógeno por una de helio-4), con casi todos los neutrones del universo —como es el caso hoy en día— atrapados dentro de los núcleos de helio-4.

Todos los elementos más pesados —incluyendo aquellos que se necesitan para formarplanetas rocosos como la Tierra y para la existencia de vida basada en el carbono— tuvieron que crearse posteriormente, en estrellas lo suficientemente calientes para quemar no solo hidrógeno —dado que esto solamente produce más helio— sino el mismo helio. Dichas estrellas son masivas y, por lo tanto, raras. Lo anterior da lugar al hecho de que todos los elementos químicos, aparte del hidrógeno y el helio, compongan solamente el 2 % de la masa en forma de átomos del universo. El helio-4, por su parte, constituye cerca del 23 % de toda lamateria ordinaria del universo, es decir, prácticamente toda la materia ordinaria que no es hidrógeno.[10]

Fases de gas y de plasma

[editar]

El helio es elgas noble menos reactivo después del neón y por tanto, el segundo elemento menos reactivo de todos ellos. Es inerte y monoatómico en condiciones normales. Debido a su baja masa atómica, en la fase gaseosa, laconductividad térmica, elcalor específico, y lavelocidad del sonido son mayores que en cualquier otro gas, excepto el hidrógeno. Por razones similares, y también debido al pequeño tamaño de sus átomos, su tasa de difusión a través de lossólidos es tres veces mayor que la del aire, y alrededor del 65 % de la del hidrógeno.[11]

Tubo de descarga lleno de helio, adoptando el símbolo de este elemento

Asimismo es también menossoluble enagua que cualquier otro gas conocido,[12]​ y suíndice de refracción es el más cercano a la unidad de todos los gases.[13]​ Este elemento tiene uncoeficiente Joule-Thomson negativo a temperatura ambiente normal, lo que significa que se calienta cuando se le permite expandirse libremente. Solo por debajo de su temperatura de inversión de Joule-Thomson (de 32 a 50 K a 1atmósfera) se enfría en la expansión libre.[11]​ Una vez preenfriado debajo de esta temperatura, el helio puede licuarse mediante el enfriamiento debido a su expansión.

La mayor parte del helio extraterrestre se encuentra en un estado deplasma, con propiedades muy diferentes a las del helio atómico. En el plasma, los electrones del helio no están ligados al núcleo, lo que hace que suconductividad eléctrica sea muy alta, aun cuando el gas está solo parcialmente ionizado. Las partículas cargadas son altamente influenciadas por loscampos magnéticos yeléctricos. Por ejemplo, en elviento solar, junto con el hidrógeno ionizado, las partículas interactúan con lamagnetósfera de la Tierra, dando lugar a lacorriente de Birkeland y a lasauroras.[14]

Fases líquida y sólida

[editar]

A diferencia de cualquier otro elemento, elhelio líquido se mantendrá así hasta elcero absoluto a presiones normales. Este es un efecto directo de la mecánica cuántica: en concreto, laenergía del punto cero del sistema es demasiado alta para permitir la congelación. El helio sólido requiere una temperatura de 1 a 1.5 K (alrededor de -272 °C o -457 °F) y alrededor de 25 bar (2.5 MPa) de presión.[15]​ A menudo es difícil distinguir el helio sólido del líquido ya que elíndice de refracción de las dos fases es casi el mismo. El sólido tiene un marcadopunto de fusión y estructura cristalina, pero es muy compresible. Aplicar presión en un laboratorio puede reducir suvolumen en más del 30 %.[16]​ Con unmódulo de compresibilidad del orden de 50 MPa,[16]​ es 50 veces más compresible que el agua. El helio sólido tiene unadensidad de 0.214 ± 0.006 g/ml a 1.15 K y 66 atm, la densidad proyectada a 0 K y 25 bar (2.5 MPa) es 0.187 ± 0.009 g/ml.[17]

Helio I

[editar]

Por debajo de supunto de ebullición de 4.22 K, y por encima delpunto lambda de 2.1768 K, el isótopo helio-4 existe en un estado normal de líquido incoloro, llamado helio I.[11]​ Al igual que otros líquidoscriogénicos, el helio I hierve cuando se calienta y se contrae cuando baja su temperatura. Por debajo del punto lambda, sin embargo, esta fase no hierve y se expande a medida que la temperatura desciende aún más.

El helio tiene un índice de refracción similar al de un gas, de 1.026, lo que hace que su superficie sea muy difícil de ver, de tal forma que se suelen utilizar flotadores depoliestireno extruido para ver en dónde se encuentra la superficie.[11]​ Este líquido incoloro, tiene unaviscosidad muy baja y una densidad de 0.145 g/mL, que es solo una cuarta parte del valor predicho por lafísica clásica.[11]​ Es necesario hacer uso de la mecánica cuántica para explicar esta propiedad y, por tanto, ambos tipos de helio líquido se llamanfluidos cuánticos, lo que significa que muestran propiedades atómicas a escala macroscópica. Esto puede ser un efecto del hecho de que su punto de ebullición está muy cerca del cero absoluto, lo que impide que el movimiento molecular aleatorio (energía térmica) oculte sus propiedades atómicas.[11]

Helio II

[editar]
Representación gráfica de la capacidad del Helio II parareptar por la superficie de los cuerpos con los que está en contacto

El helio líquido por debajo de su punto lambda muestra características sumamente inusuales, en un estado llamado helio II. La ebullición del helio II no es posible debido a su altaconductividad térmica; la entrada de calor causa la evaporación del líquido directamente a gas. El isótopohelio-3 también tiene una fase desuperfluido, pero solo a temperaturas mucho más bajas. Como resultado, se sabe menos sobre las propiedades de esta fase en dicho isótopo.[11]

El helio II es un superfluido, un estado cuántico de la materia con propiedades extrañas. Por ejemplo, cuando fluye a través decapilares tan delgados como de 10−7 a 10−8 m, no tiene viscosidad medible. Sin embargo, cuando se realizan mediciones entre dos discos en movimiento, se observa una viscosidad comparable a la del helio gaseoso. La teoría actual explica este fenómeno utilizando unmodelo de dos fluidos para el helio II. En este modelo, el helio líquido por debajo del punto lambda se considera que contiene una proporción de átomos de helio en estado base, que componen el superfluido, y que fluyen con unaviscosidad exactamente igual a cero; y una proporción de átomos de helio en un estado excitado, que se comportan más como unfluido ordinario.[18]

En el efecto fuente, se construye una cámara que está conectada a un depósito de helio II por medio de un disco sinterizado a través del cual el helio superfluido pasa fácilmente, pero aquellos líquidos que no son superfluidos no pueden. Si se calienta el interior del contenedor, el helio deja de ser superfluido. A fin de mantener fracción de equilibrio de helio superfluido, este se fuga a través del disco y aumenta la presión, haciendo que ellíquido salga brotando del recipiente.[19]

La conductividad térmica del helio II es mayor que la de cualquier otra sustancia conocida. Es un millón de veces mayor que la del helio I y varios cientos de veces la delcobre.[11]​ Esto se debe a que la conducción de calor se produce por un mecanismo cuántico excepcional. La mayoría de los materiales que son buenos conductores térmicos tienen una banda deelectrones de valencia libres que sirven para transferir el calor. El helio II no tiene banda de valencia, pero conduce bien el calor. El flujo de calor se rige por ecuaciones similares a laecuación de onda utilizada para caracterizar la propagación del sonido en el aire. Cuando se introduce calor, este se mueve a través de helio II en forma de ondas a 20 metros por segundo a una temperatura de 1.8 K. Este fenómeno es conocido comosegundo sonido.[11]

Láser de helio

El helio II también presenta un efecto de ascensión. Cuando unasuperficie se extiende más allá del nivel de helio II, este se mueve a lo largo de la superficie, contra la fuerza degravedad. El líquido se escapará de un contenedor que no esté sellado reptando por las paredes del mismo hasta que encuentre una región con mayor temperatura donde se evaporará. Este ascenso lo realiza en una película de 30nm de espesor, independientemente del material de superficie. Esta película se llamapelícula de Rollin y lleva el nombre de la primera persona que caracterizó este rasgo, Bernard V. Rollin.[11][20][21]​ Como resultado de este comportamiento y de la habilidad del helio II de escapar a través de aberturas pequeñas, es muy difícil mantener a este fluido confinado. Las ondas que se propagan a través de una película de Rollin se rigen por la misma ecuación deondas de gravedad en aguas poco profundas, pero en lugar de lagravedad, la fuerza de restauración es lafuerza de van der Waals.[22]​ Estas ondas son conocidas como tercer sonido.[23]

Compuestos

[editar]
Véase también:Compuesto de gas noble
Anión fluoroheliato,OHeF{\displaystyle {\ce {OHeF-}}}

Dado que el helio es ungas noble, en la práctica no participa en lasreacciones químicas, aunque bajo la influencia de descargas eléctricas o bombardeado conelectrones forma compuestos.

El helio tiene unavalencia cero y no es químicamente reactivo bajo condiciones normales.[24]​ Es un aislante eléctrico a menos que esté ionizado. Al igual que los demás gases nobles, tieneniveles de energía metaestables, lo que le permite seguir ionizado en una descarga eléctrica con un voltaje por debajo de supotencial de ionización.[11]​ El helio puede formar compuestos inestables, conocidos comoexcímeros, con elwolframio,yodo,flúor yfósforo, cuando se somete a una descarga eléctrica luminiscente, a un bombardeo de electrones, o bien es un plasma por otra razón. Los compuestos moleculares HeNe, HgHe10 y WHe2, y losiones moleculares He+2, He2+2, HeH+, y HeD+ se pueden crear de esta manera.[25]​ Esta técnica también ha permitido la producción de la molécula neutra He2, que tiene un gran número de sistemas de bandas espectrales, y de la molécula HgHe, que aparentemente solo se mantiene unida por fuerzas de polarización.[11]​ En teoría, otros compuestos reales también son posibles, como el fluorohidruro de helio (HHeF), que sería análogo alfluorohidruro de argón, descubierto en 2000.[26]​ Los cálculos indican que dos nuevos compuestos que contienen un enlace de helio-oxígeno podrían ser estables.[27]​ Dos nuevas especies moleculares, predichas teóricamente, CsFHeO y N(CH3)4FHeO, son derivados de un anión metaestable [F-HeO], anticipado en 2005 en forma teórica por un grupo deTaiwán. De confirmarse experimentalmente, estos compuestos acabarían con lainercia química del helio, y el único elemento completamente inerte sería elneón.[28]

El helio ha sido colocado en jaulas moleculares de carbono (losfullerenos) por medio de calentamiento a alta presión. Las moléculas defullereno endohédrico formadas son estables hasta temperaturas altas. Cuando se forman los derivados químicos de estos fullerenos, el helio permanece dentro de ellos.[29]​ Si se utiliza helio-3, se puede observar fácilmente porespectroscopia de resonancia magnética nuclear.[30]​ Se han reportado una gran cantidad de fullerenos que contienen helio-3. Aunque los dichos átomos no se encuentran ligados por medio deenlaces covalentes oiónicos, estas sustancias tienen propiedades distintas y una composición definida, al igual que todos los compuestos químicos estequiométricos.

Isótopos

[editar]
Artículo principal: Anexo:Isótopos de helio
Representación esquemática de un átomo de4He

Existen ochoisótopos conocidos del helio, pero tan solo el3He y el4He sonestables. En la atmósfera terrestre hay un átomo de3He por cada millón de átomos de4He.[31]​ A diferencia de otros elementos, la abundancia isotópica del helio varía mucho por su origen, debido a los diferentes procesos de formación. El isótopo más común, el4He, se produce en la Tierra mediante ladesintegración alfa de elementos radiactivos más pesados; las partículas alfa que aparecen son átomos de4He completamente ionizado. El4He tiene un núcleo inusualmente estable debido a que susnucleones están ordenados en capas completas. Además, este isótopo se formó en grandes cantidades durante lanucleosíntesis primordial en el Big Bang.[32]

El3He está presente hoy en día en la tierra tan solo en trazas (la mayoría data desde la formación de la Tierra), aunque algo de este cae a la Tierra al ser atrapado en elpolvo cósmico.[33]​ Algunos rastros también son producidos mediante ladesintegración beta deltritio.[34]​ Algunas rocas de lacorteza terrestre tienen distintas proporciones de isótopos que varían hasta un factor de diez. Estas proporciones pueden usarse para investigar el origen de las rocas así como la composición delmanto terrestre.[33]​ El3He es mucho más abundante en las estrellas como producto de la fusión nuclear. Por consiguiente, en elmedio interestelar, la proporción de3He y4He es alrededor de 100 veces más grande que la que hay en la Tierra.[35]​ El material extraplanetario, comoregolitos de asteroides y lunares, tiene trazas de3He producto del bombardeo de losvientos solares contra ellos. La superficie de laLuna tiene concentraciones de3He de alrededor de 0.01 ppm.[36][37]​ Algunas personas, principalmente Gerald Kulcinski en 1986,[38]​ han propuesto explorar la Luna, excavar los regolitos lunares, y utilizar el3He parafusión nuclear.

El4He líquido puede ser enfriado hasta 1 kelvin utilizando enfriamiento por evaporación en recipientes en los que se puede alcanzar y mantener estas temperaturas. Un enfriamiento similar para el helio-3, que tiene un punto de ebullición más bajo, se puede alcanzar alrededor de los 0.2 K en unrefrigerador de helio-3. Las mezclas que contienen la misma proporción de helio-3 y helio-4 a una temperatura por debajo de 0.8 K se separan en dos fases no miscibles debido a su incompatibilidad (cada una obedece a unaestadística cuántica diferente: los átomos de helio-4 sonbosones mientras que los átomos de helio-3 sonfermiones).[11]​ Losrefrigeradores de dilución usan esta imposibilidad de mezclado para alcanzar temperaturas de unos pocos milikelvin.

Es posible producir isótopos exóticos de helio, los cuales rápidamente se descomponen en otras sustancias. El isótopo pesado de menor duración es el5He, con unperiodo de semidesintegración de 7.6×10–22 segundos. El6He se descompone emitiendo unapartícula beta y su periodo de desintegración es de 0.8 segundos. El7He también emite partículas beta así comorayos gamma. Tanto el7He y el8He se crean mediante algunasreacciones nucleares.[11]​ El6He y el8He son conocidos por tener unhalo nuclear. El ²He (que consiste en dos protones y ningún neutrón) es unradioisótopo que se desintegra enprotio (hidrógeno) por medio deemisión de protones, con un periodo de desintegración de 3×10–27 segundos.[11]

Abundancia y obtención

[editar]

Abundancia natural

[editar]

El helio es el segundo elemento más abundante deluniverso conocido tras elhidrógeno y constituye alrededor del 23 % de lamasa bariónica del universo.[31]​ La mayor parte del helio se formó durante lanucleosíntesis delBig Bang, en los tres primeros minutos después de este. De esta forma, la medición de su abundancia contribuye a los modelos cosmológicos. En lasestrellas, el helio se forma por lafusión nuclear del hidrógeno enreacciones en cadena protón-protón y en elciclo CNO, los cuales forman parte de lanucleosíntesis estelar.[32]

En la atmósfera terrestre la concentración de helio por volumen es de tan solo 5.2 partes por millón.[39][40]​ La concentración es baja y prácticamente constante a pesar de la continua producción de nuevo helio, debido a que la mayor parte del helio en la atmósfera se escapa al espacio debido a distintos procesos.[41][42]​ En laheterosfera terrestre, una parte de la atmósfera superior, el helio y otros gases ligeros son los elementos más abundantes.

Casi todo el helio presente en la Tierra es el resultado de la desintegración radiactiva, y por tanto, un globo de helio terrestre es, en esencia, una bolsa de partículas alfa expelidas por este proceso. El helio se encuentra en grandes cantidades enminerales deuranio ytorio, incluyendocleveíta,pechblenda,carnotita ymonacita, ya que estos emiten partículas alfa (núcleos de helio, He2+) y los electrones se combinan de inmediato con ellas, tan pronto como las partículas son detenidas por la roca. De esta manera, se estima que unas 3000 toneladas de helio se generan al año en toda lalitosfera.[43][44][45]​ En lacorteza terrestre, la concentración de helio es de 8 partes por mil millones. En el mar, la concentración es de solo 4 partes por billón. También hay pequeñas cantidades en manantiales de aguas minerales, gas volcánico, y hierro meteórico. Debido a que el helio es atrapado de manera similar al gas natural por una capa impermeable de roca, las mayores concentraciones de este elemento en el planeta se encuentran en el gas natural, de donde se extrae la mayor parte del helio comercial. La concentración varía en una amplia gama de unas pocasppm hasta más del 7 % en un pequeño campo de gas en elcondado de San Juan,Nuevo México.[46][47]

En 2016 científicos británicos descubren un gran yacimiento de gas helio en África.[48]​ Este yacimiento, ubicado en laRepública Unida de Tanzania, mide aproximadamente 54 millones de pies cúbicos de volumen y es el mayor yacimiento de helio del mundo.[49]

Extracción moderna

[editar]

Para su uso a gran escala, se extrae pordestilación fraccionada a partir del gas natural, que contiene hasta un 7 % de helio.[50]​ Al tener unpunto de ebullición más bajo que cualquier otro elemento, se utilizan bajas temperaturas y altas presiones para licuar casi todos los demás gases (principalmentenitrógeno ymetano). El helio crudo resultante se purifica por medio de exposiciones sucesivas a temperaturas bajas, en la que casi todo el nitrógeno y los otros gases restantes se precipitan fuera de la mezcla gaseosa.[11]​ Como una fase de purificación final, se utilizacarbón activado, lo que da como resultado helio grado A, con una pureza del 99.995 %.[11]​ La principal impureza en el helio grado A es el neón. En la fase final de la producción, la mayoría del helio que se produce es licuado por medio de un proceso criogénico. Esto es necesario para aplicaciones que requieren helio líquido y también permite a los proveedores de helio reducir el costo en el transporte a larga distancia, dado que la mayoría de los contenedores de helio líquido tienen una capacidad cinco veces mayor que la de los camiones cisterna que trasportan helio gaseoso.[51][52]

En 2008, alrededor de 169 millones de metros cúbicos estándar (SCM, por sus siglas en inglés, definidos como un metro cúbico a una presión de 1atm y a una temperatura de 15 °C) de helio se extrajeron a partir del gas natural o de reservas de helio. De estos, aproximadamente el 78 % provinieron de losEstados Unidos, el 10 % deArgelia, y del resto la mayor parte fueron extraídos enRusia,Polonia yCatar.[53]​ En los Estados Unidos, la mayor parte del helio se extrae a partir del gas natural de los campos de Hugoton y otros cercanos enKansas,Oklahoma yTexas.[54]​ En 2000, los Estados Unidos tenían reservas de helio en complejos de pozos, de alrededor de 4.2×109{\displaystyle 10^{9}} SCM. Esta cantidad es suficiente para unos 25 años de uso mundial, o de 35 años de consumo de Estados Unidos, aunque se espera que factores en el ahorro y el procesamiento impacten los números efectivos de las reservas. Se estima que las reservas básicas de helio aún no probadas que se pudieran obtener a partir de gas natural en los Estados Unidos son de 3.1 a 5.3×1013 SCM, o aproximadamente cuatro órdenes de magnitud mayor que las reservas probadas.[55]​ En 2016 en Tanzania se encontró un yacimiento de 2800 millones de metros cúbicos de helio, el mayor conocido hasta la fecha, aunque se encuentra en fase de prospección y no hay fecha prevista para el inicio de las extracciones.[56]

El helio se debe extraer principalmente del gas natural, debido a que su presencia en el aire es solo una fracción comparada con la de la delneón, y sin embargo, su demanda es mucho mayor. Se estima que si toda la producción de neón se reinstrumentara para ahorrar helio, se satisfarían un 0.1 % de las demandas mundiales de helio. Igualmente, solamente un 1 % de las demandas mundiales de helio se podrían satisfacer reinstrumentando todas las plantas de destilación de aire. El helio puede ser sintetizado por medio del bombardeo delitio oboro utilizando protones de alta velocidad. Sin embargo, este método de producción es totalmente inviable económicamente.[57]

Agotamiento en los suministros de helio

[editar]

Las reservas actuales de helio se están utilizando mucho más rápido de lo que este elemento se puede reponer. Dada esta situación, hay grandes preocupaciones de que el suministro de helio pueda agotarse pronto. En las reservas más grandes del mundo, enAmarillo,Texas, se espera que este gas se agote en ocho años contando desde 2008. Esto podría prevenirse si los actuales usuarios capturasen y reciclasen el gas y si las compañías depetróleo y gas natural hiciesen uso de técnicas de captura de helio al extraerlos.[58][59]

Debido a una reducción en el volumen de exportaciones por parte de Estados Unidos de helio, dando prioridad a los consumidores institucionales dentro del país frente a empresas privadas, la duración de las reservas se ha ido extendiendo. En 2019, el precio del helio en la subasta de la reserva nacional de helio de EE.UU aumentó un 135%.[60]​ Desde entonces, otros países exportadores de gas natural, comoArgelia yCatar, han desarrollado plantas de producción de helio. Sin embargo, la mayor planta en construcción, propiedad deGazprom y localizada enRusia, ha sufrido retrasos en su puesta en marcha debido a las sanciones económicas que el país lleva recibiendo desde lainvasión de Ucrania.[61]

Aplicaciones

[editar]

El helio es más ligero que elaire y a diferencia delhidrógeno no es inflamable, siendo además su poder ascensional un 8 % menor que el de este, por lo que se emplea como gas de relleno englobos yzepelines publicitarios, de investigación atmosférica e incluso para realizar reconocimientos militares.

Aun siendo la anterior la principal, el helio tiene más aplicaciones:

De la producción mundial total de helio en 2008, de 32 millones de kg, su mayor uso (alrededor del 22 % del total en 2008) fue en aplicaciones criogénicas. De estas la mayoría fueron en medicina en el enfriamiento de imanes superconductores en escáneres deresonancia magnética.[62]​ Otros usos importantes (un total de cerca de 78 % de su uso en 1996) fueron en los sistemas de presurización y saneamiento, el mantenimiento de atmósferas controladas y lasoldadura.[63]

El helio se utiliza para muchos propósitos que requieren algunas de sus propiedades únicas, tales como su bajopunto de ebullición, bajadensidad, bajasolubilidad, altaconductividad térmica, o su baja reactividad química. Asimismo, está disponible comercialmente tanto en forma líquida como gaseosa. Como líquido, puede ser suministrado en recipientes pequeños llamadosfrascos de Dewar que permiten almacenar hasta 1000 litros de helio, o en los contenedores ISO de gran tamaño que tienen una capacidad nominal de hasta 42 m³. En forma gaseosa, se suministran pequeñas cantidades en cilindros de alta presión que pueden contener un volumen equivalente a 8 m³ estándar, mientras que grandes cantidades de gas a alta presión son suministradas en camiones cisterna que tienen una capacidad que equivale 4.860 m³ estándar. Esto se debe a que el volumen del gas se reduce enormemente al ser sometido a altas presiones.

Dirigibles, globos y cohetes

Debido a que el helio es más ligero que el aire, los dirigibles y globos son inflados con este gas para elevarlos. Mientras que el hidrógeno experimenta unafuerza de empuje aproximadamente un 7 % mayor, el helio tiene la ventaja de no ser inflamable (además de ser retardante delfuego). En laindustria espacial, se utiliza como un medio de llenado para desplazar a loscombustibles y oxidantes en los tanques de almacenamiento, y para condensar elhidrógeno y eloxígeno a fin de producir combustible para cohetes. También se utiliza para depurar el combustible y el oxidante de los equipos de apoyo en tierra antes del lanzamiento, así como para preenfriar el hidrógeno líquido en vehículos espaciales. Por ejemplo, el propulsor delSaturno V utilizado en elPrograma Apolo necesitó cerca de 370.000 m³ de helio para poner en marcha el cohete.

Comercial y recreativo

El helio es menos denso que el aire atmosférico, por lo que cambia el timbre (mas no laaltura) de la voz de una persona cuando se inhala.[64]​ Esto se debe a que, al ser el helio un gas bastante ligero, se moviliza más rápido por los espacios, produciendo que las cuerdas vocales se muevan a mayor velocidad, provocando una onda sonora más veloz, y por tanto, más aguda. Sin embargo, la inhalación proveniente de una fuente comercial típica, como las utilizadas para rellenar globos, puede ser peligrosa debido al riesgo de asfixia por falta de oxígeno y al número de contaminantes que pueden estar presentes. Entre estos pueden estar incluidas trazas de otros gases, además de aceite lubricante en aerosol. No obstante, al tratarse de productos infantiles, existen mecanismos que exigen garantizar la no toxicidad del gas, como superar la "Conformidad Europea" (marcado CE) obligatorio en juguetes y derivados similares en el mercado europeo, para garantizar la seguridad del público infantil.

Por su baja solubilidad en eltejido nervioso, las mezclas de helio, comotrimix, heliox y Heliair se utilizan para el buceo de profundidad para reducir los efectos de la narcosis.[65][66]​ A profundidades por debajo de 150 metros, se agregan pequeñas cantidades de hidrógeno a la mezcla de helio-oxígeno para contrarrestar los efectos delsíndrome nervioso de alta presión.[67]​ A estas profundidades se ha descubierto que la baja densidad del helio reduce considerablemente el esfuerzo en la respiración.

Losláseres de helio-neón tienen varias aplicaciones, incluyendo lectores decódigo de barras.

Detección de fugas industriales
Una máquina en una cámara de pruebas para la detección de fugas

Una de las aplicaciones industriales del helio es la detección de fugas. Debido a que se difunde a través de sólidos a una tasa tres veces mayor que la del aire, se utiliza como gas indicador para detectar fugas en el equipo de alto vacío y recipientes a alta presión.[68]

La tasa de fugas en recipientes industriales (generalmente cámaras de vacío y tanques criogénicos) se mide haciendo uso del helio, debido a su diámetro molecular pequeño y a su condición de gas inerte. Todavía no se conoce otra sustancia inerte que se pueda filtrar a través de microfisuras o microporos en la pared de un contenedor a un ritmo mayor que el helio. Para encontrar fugas en contenedores se utiliza un detector de fugas de helio (véaseespectrómetro de masas). Las fugas de helio a través de grietas no deben confundirse con la penetración de gas a través de un material masivo. A pesar de que se han documentado constantes de permeabilidad para el helio a través de vidrios, cerámicas y materiales sintéticos, los gases inertes como el helio no se pueden permear a través de la mayoría de los metales masivos.[69]​ Si se necesita conocer la tasa de fuga total del producto que se está probando (por ejemplo en bombas de calor o sistemas de aire acondicionado), el objeto se coloca en una cámara de prueba, el aire dentro de ella se extrae con bombas de vacío y el producto es rellenado con helio a una presión específica. El helio que se escapa a través de las fugas es detectado por un espectrómetro de masas aún a tasas de fuga de hasta 1020{\displaystyle ^{-20}} Pa·m³/s. El procedimiento de medición es normalmente automático, y se conoce «como prueba integral de helio». En una prueba más sencilla, el producto se llena de helio y un operador busca manualmente la fuga con un dispositivo llamadosniffer (del inglés «olfateador»).[70]

Uso científico

Por su ausencia de reactividad y alta conductividad térmica, su transparencia a losneutrones, y debido a que no forma isótopos radiactivos en condiciones de reactor, se utiliza como medio de transmisión de calor en algunos reactores nucleares enfriados por gas.[68]​ Otra de sus utilidades consiste en usarlo como gas de protección en los procesos desoldadura por arco en materiales que se contaminan con facilidad por vía aérea.

Debido a que es inerte, se utiliza como gas protector en el crecimiento de cristales desilicio ygermanio en la producción detitanio ycirconio, además de en lacromatografía de gases. Por esta misma razón, por su conductividad térmica y por la altavelocidad del sonido dentro de él, su naturaleza comogas ideal y el alto valor de sucoeficiente de expansión adiabática, también es útil en túneles de viento supersónicos y en instalaciones de prueba donde se requiere una liberación súbita de la energía del gas.[71][72]

El helio, mezclado con un gas más pesado, como elxenón, es útil para la refrigeración termoacústica debido al elevado coeficiente de expansión adiabática resultante y su bajonúmero de Prandtl.[73]​ El comportamiento inerte del helio tiene ventajas ambientales con respecto a los sistemas de refrigeración convencionales, que contribuyen al agotamiento de lacapa de ozono o alcalentamiento global.[74]

Hoy en día se utiliza helio líquido para refrigerar los imanes superconductores en los escáneres deresonancia magnética.

El uso del helio reduce los efectos de distorsión que provocan las variaciones de temperatura en el espacio en las lentes de algunostelescopios, debido a su bajo índice de refracción. Este método es utilizado especialmente en telescopios solares, en los cuales un tubo de vacío fuertemente sellado resultaría demasiado pesado.[75][76]

Mediante un proceso conocido comodatación por helio, puede estimarse la edad de las rocas y minerales que contienenUranio yTorio.

El helio líquido se utiliza para enfriar ciertos metales —por ejemplo, los imanes superconductores utilizados en la tomografía porresonancia magnética— a temperaturas extremadamente bajas, las cuales son necesarias para la superconductividad. ElGran Colisionador de Hadrones del CERN usa 96 toneladas de helio líquido para mantener la temperatura a 1.9 K.[77]​ El helio a baja temperatura, también se usa en criogenia.

El helio es un gas portador comúnmente utilizado en lacromatografía de gases.

Historia

[editar]

Descubrimiento científico

[editar]
Líneas espectrales del helio

La primera evidencia de la existencia del helio se observó el 18 de agosto de 1868 como unalínea brillante de color amarillo con una longitud de 587.49nanómetros en elespectro de lacromosfera del Sol. La línea fue detectada por el astrónomo francésPierre Janssen durante uneclipse solar total en Guntur,India.[78]​ En un principio se pensó que esta línea era producida por elsodio. El 20 de octubre del mismo año, el astrónomo inglésJoseph Norman Lockyer observó una línea amarilla en el espectro solar, a la cual nombró como lalínea de Fraunhofer D3 porque estaba cerca de las líneas de sodio D1 y D2 ya conocidas.[11]​ Lockyer llegó a la conclusión de que dicha línea era causada por un elemento existente en el Sol pero desconocido en la Tierra. Eduard Frankland confirmó los resultados de Janssen y propuso el nombrehelium para el nuevo elemento, en honor al dios griego del sol ( Ἥλιος,Helios), con el sufijo-ium ya que se esperaba que el nuevo elemento fuera metálico.[79][80][81]

En 1882, el físico italianoLuigi Palmieri detectó helio en la Tierra por primera vez, a través de su línea espectral D3, cuando analizó la lava delmonte Vesubio.[82]

El 26 de marzo de 1895SirWilliam Ramsay aisló el helio al tratar lacleveíta (una variedad de lauranita que contiene por lo menos un 10 % detierras raras) con ácidos minerales. Ramsey en realidad buscabaargón, pero después de separar elnitrógeno y eloxígeno del gas liberado por elácido sulfúrico, notó una brillante línea amarilla que coincidía con la línea D3 observada en el espectro solar.[11][83][84][85]​ Las muestras fueron identificadas como helio por Lockyer y el físico británicoWilliam Crookes. Además fue aislado de la cleveíta el mismo año independientemente por los químicosPer Teodor Cleve yAbraham Langlet enUpsala (Suecia), quienes pudieron obtener suficiente cantidad del gas para determinar acertadamente supeso atómico.[31][86][87]​ El helio también fue aislado por el geoquímico estadounidenseWilliam Francis Hillebrand, aunque este atribuyó las líneas al nitrógeno.

En 1907Ernest Rutherford yThomas Royds demostraron que laspartículas alfa son núcleos de helio, al permitir a las partículas penetrar una delgada pared de un tubo de vidrio al vacío y después creando una descarga eléctrica dentro del mismo para estudiar el espectro del gas. En 1908 el físico neerlandésHeike Kamerlingh Onnes produjo helio líquido por primera vez enfriando el gas hasta 0.9K,[88]​ lo que le hizo merecedor delpremio Nobel. Él trató asimismo de solidificar el helio reduciendo su temperatura, aunque no lo logró debido a que este elemento carece de un punto triple, temperatura a la cual las fases sólida, líquida y gaseosa existen en equilibrio. En 1926 su discípuloWillem Hendrik Keesom logró por vez primera solidificar 1 cm³ helio.[89]

En 1938, el físico rusoPyotr Leonidovich Kapitsa descubrió que el helio-4 casi no tiene viscosidad a temperaturas cercanas al cero absoluto, un fenómeno que ahora se llamasuperfluidez.[90]​ Este fenómeno está relacionado con lacondensación de Bose-Einstein. En 1972, el mismo fenómeno se observó en elhelio-3, pero a temperaturas mucho más cerca del cero absoluto, por los físicos estadounidenses Douglas D. Osheroff, David M. Lee y Robert C. Richardson. Se cree que en el helio-3 el fenómeno está relacionado con la creación de pares defermiones de este isótopo, de tal manera que se formanbosones, en analogía a lospares de Cooper que producen lasuperconductividad.[91]

Extracción y uso

[editar]
Un recipiente de gas lleno con helio

Después de que una operación de perforación de petróleo en 1903 enDexter,Kansas, produjera ungéiser de gas que no se podía quemar, el geólogo Erasmus Haworth recogió muestras de los gases que emanaban y se las llevó a laUniversidad de Kansas enLawrence, donde, con la ayuda de los químicos Hamilton Cady y David McFarland, descubrió que el gas consistía, en volumen, de 72 % denitrógeno, 15 % demetano (un porcentaje que se puede quemar únicamente con suficienteoxígeno), 1 % dehidrógeno, y 12 % de un gas no identificado.[92]​ En un análisis posterior, Cady y McFarland descubrieron que el 1.84 % de la muestra de gas era helio.[93][94]​ Esto demostró que a pesar de su rareza global en la Tierra, el helio estaba concentrado en grandes cantidades debajo de lasGrandes Llanuras de Estados Unidos, disponible para su extracción como un subproducto delgas natural.[95]​ Las mayores reservas de helio se encontraban en los campos de gas del suroeste de Kansas, deTexas yOklahoma.

Esto permitió a los Estados Unidos convertirse en el principal productor de helio en el mundo. Siguiendo una sugerencia de Sir Richard Threlfall, lamarina de este país patrocinó tres pequeñas plantas experimentales de producción de helio durante laPrimera Guerra Mundial. El objetivo era proporcionar a los globos de defensa un gas no inflamable más ligero que el aire. Con este programa se produjeron un total de 5.700 m³ de helio al 92 %, a pesar de que previamente solo se había obtenido menos de un metro cúbico de gas. Parte de él se utilizó en la primera aeronave inflada con helio de la Marina estadounidense, que hizo su primer viaje deHampton Roads,Virginia, a Bolling Field enWashington D. C., el 1 de diciembre de 1921.[96]

Aunque el proceso de extracción usando licuefacción de gas a baja temperatura no se desarrolló a tiempo para ser relevante durante la Primera Guerra Mundial, la producción continuó. El helio se utilizó principalmente como ungas de elevación en aeronaves más ligeras que el aire. La demanda para este uso, así como para lasoldadura por arco fue mayor durante laSegunda Guerra Mundial. El espectrómetro de masas de helio también fue vital en labomba atómica desarrollada por elProyecto Manhattan.[97]

El gobierno de los Estados Unidos creó la Reserva Nacional de helio en 1925 enAmarillo, Texas, con el objetivo de suministrárselo a las aeronaves militares en tiempo de guerra, y a las aeronaves comerciales en tiempos de paz. Debido a un embargo militar de Estados Unidos contraAlemania en el que el suministro de helio quedó restringido, elLZ-129Hindenburg se vio obligado a utilizar el hidrógeno como gas elevador. El uso de helio después de la Segunda Guerra Mundial se redujo, pero las reservas se ampliaron en la década de 1950 para garantizar su suministro en forma líquida como refrigerante para crear combustible de hidrógeno y oxígeno (entre otros usos) para los cohetes durante la carrera espacial y laGuerra Fría. El uso de helio en los Estados Unidos en 1965 fue de más de ocho veces el consumo máximo en tiempo de guerra.[98]

La Oficina de Minas de Estados Unidos dispuso de cinco plantas privadas para recuperar helio a partir del gas natural. Para este programa de conservación de helio, la Oficina construyó 684 km de tuberías desdeBushton, Kansas para conectarlas con las plantas del Gobierno parcialmente agotadas en el campo de gas deCliffside, cerca de Amarillo, Texas. Esta mezcla de helio y nitrógeno fue inyectada y almacenada en el campo de gas de Cliffside hasta que se necesitara, y hasta que fuera purificada posteriormente.[99]

Para 1995 se habían almacenado cerca de mil millones de metros cúbicos de gas, y las reservas constituían una deuda de 1400 millones de dólares, lo que en 1996 obligó al Congreso de los Estados Unidos a eliminarlas. El helio producido entre 1930 y 1945 tenía aproximadamente un 98.3 % de pureza (con un 2 % de nitrógeno), lo cual fue suficiente para llenar los dirigibles. En 1945, se usó una pequeña cantidad de helio a 99.9 %, para hacer soldaduras.[100]​ Para 1949 había disponibles cantidades comerciales de helio grado A al 99.9 %.

Durante muchos años, los Estados Unidos han producido más del 90 % de helio que puede utilizarse comercialmente en el mundo, mientras que las plantas de extracción enCanadá,Polonia,Rusia y otros países producen el resto.[101]​ A mediados de la década de 1990, una nueva planta enArzew,Argelia entró en funcionamiento y produjo 17 millones de metros cúbicos de helio, con una producción suficiente para cubrir toda la demanda de Europa. Mientras tanto, en 2000, el consumo de helio dentro de los Estados Unidos había aumentado a más de 15 millones de kg por año.[102]​ Entre 2004 y 2006, se construyeron dos plantas adicionales, una en Ras laffen,Catar y la otra en Skikda, Argelia. Sin embargo a principios de 2007, Ras laffen estaba funcionando al 50 %, y Skikda aún no había sido puesta en marcha. Argelia se convirtió rápidamente en el segundo principal productor de helio.[51]​ A través de este tiempo, tanto el consumo de helio, como los costos de producción de helio aumentaron.[103]​ Entre 2002 y 2007 el precio del helio se duplicó, y solo en 2008 los principales proveedores aumentaron sus precios en un 50 %.[104]

Precauciones

[editar]

El helio neutro en condiciones normales no es tóxico, no juega ningún papel biológico y se encuentra en trazas en la sangre humana. Si se inhala suficiente helio de forma tal que remplace al oxígeno necesario para la respiración, puede generar asfixia. Las precauciones que se deben de tomar para el helio usado en criogenia son similares a las delnitrógeno líquido. Su temperatura extremadamente baja puede causar quemaduras por congelación y la tasa de expansión de líquido a gas puede causar explosiones si no se utilizan mecanismos de liberación de presión.

Los depósitos de helio gaseoso a temperaturas de 5 a 10 K deben almacenarse como si contuvieran helio líquido debido al gran incremento de presión y a la significativadilatación térmica que se produce al calentar el gas desde una temperatura a menos de 10 K hasta temperatura ambiente.[24]

Efectos biológicos

[editar]
Efectos del helio en la voz humana
Efectos del helio en la voz humana

Lavelocidad del sonido en el helio es casi tres veces la velocidad del sonido en el aire. Debido a la frecuencia fundamental de una cavidad llena de gas es proporcional a la velocidad del sonido en el gas. Si se inhala helio se produce un aumento correspondiente en las alturas de las frecuencias de resonancia de lascuerdas vocales.[105]​ (El efecto contrario, la reducción de frecuencias, se puede obtener por la inhalación de un gas denso como elhexafluoruro de azufre).

Su inhalación puede ser peligrosa si se hace en exceso, ya que es un gas asfixiante y desplaza aloxígeno necesario para la respiración normal.[106]​ La respiración de helio puro continua, causa la muerte por asfixia en pocos minutos. La inhalación de helio directamente de cilindros a presión es extremadamente peligrosa, ya que la alta velocidad de flujo puede resultar en la ruptura de los tejidos pulmonares.[106][107]​ Sin embargo, la muerte causada por el helio es muy rara, en los Estados Unidos solo se registraron dos fallecimientos entre 2000 y 2004.[107]

A altas presiones (más de 20 atm o dos MPa), una mezcla de helio y oxígeno (heliox) puede conducir al síndrome de alta presión nerviosa; una especie de efecto anestésico inverso. Añadiendo una pequeña cantidad denitrógeno a la mezcla puede resolverse el problema.[108][109]

Véase también

[editar]

Referencias

[editar]
  1. Raven, Peter H.; Evert, Ray Franklin; Eichhorn, Susan E. (1992).Biología de las plantas. Reverte.ISBN 9788429118421. Consultado el 3 de octubre de 2019. 
  2. Real Academia Española.«helio».Diccionario de la lengua española (23.ª edición). Consultado el 15 de mayo de 2018. 
  3. «Under pressure, helium forms stable molecules».C&EN Global Enterprise(en inglés)95 (7): 5-5. 13 de febrero de 2017.ISSN 2474-7408.doi:10.1021/cen-09507-notw1. Consultado el 3 de diciembre de 2020. 
  4. Melinda Rose (octubre de 2008).«Helium: Up, Up and Away?»(en inglés). Photonics Spectra. Consultado el 5 de abril de 2010. 
  5. Wilkis, J. (1967).The Properties of Liquid and Solid Helium. Oxford, Inglaterra: Clarendon Press.ISBN 0-19-851245-7. 
  6. Watkins, Thayer.«Magnetic susceptibility of the elements and inorganic compounds».Universidad Estatal de San José. Archivado desdeel original el 26 de mayo de 2009. Consultado el 10 de marzo de 2010. 
  7. Halliday, David; Resnick, Robert; Krane, Kenneth.Física2 (tercera edición). Compañía Editorial Mexicana. p. 610.ISBN 968-26-1255-1. 
  8. Rapp, Donald (1971).Quantum Mechanics(en inglés). Estados Unidos de América: Holt, Rinehart and Winston, Inc. pp. 336-342.ISBN 03-081294-1|isbn= incorrecto (ayuda). 
  9. Liddle, Andrew.Introducción to modern Cosmology(en inglés) (segunda edición). Inglaterra: Wiley. pp. 91-92.ISBN 0470 84834 0.  Esta proporción se puede calcular haciendo un cociente de lasdistribuciones de Maxwell-Boltzmann para el protón y el electrón y utilizando el valor conocido de las masas de cada uno de ellos.
  10. Halliday, David; Resnick, Robert; Krane, Kenneth.Física2 (tercera edición). Compañía Editorial Mexicana. pp. 680-684.ISBN 968-26-1255-1. 
  11. abcdefghijklmnñopqrClifford A. Hampel (1968).The Encyclopedia of the Chemical Elements. Nueva York: Van Nostrand Reinhold. pp. 256-268.ISBN 0442155980. 
  12. Weiss, Ray F. (1971). «Solubility of helium and neon in water and seawater».J. Chem. Eng. Data16 (2): 235-241.doi:10.1021/je60049a019. 
  13. Stone, Jack A.; Stejskal, Alois (2004). «Using helium as a standard of refractive».Metrologia41: 189-197.doi:10.1088/0026-1394/41/3/012. 
  14. Buhler, F.; Axford, W. I.; Chivers, H. J. A.; Martin, K. (1976). «Helium isotopes in an aurora».J. Geophys. Res.81 (1): 111-115.doi:10.1029/JA081i001p00111. 
  15. «Solid Helium». Department of PhysicsUniversity of Alberta. 5 de octubre de 2005. Archivado desdeel original el 31 de mayo de 2008. Consultado el 20 de julio de 2008. 
  16. abMalinowska-Adamska, C.; Soma, P.; Tomaszewski, J. (2003). «Dynamic and thermodynamic properties of solid helium in the reduced all-neighbours approximation of the self-consistent phonon theory».Physica status solidi (b)240 (1): 55-67.doi:10.1002/pssb.200301871. 
  17. Henshaw, D. B. (1958). «Structure of Solid Helium by Neutron Diffraction».Physical Review Letters109 (2): 328-330.doi:10.1103/PhysRev.109.328. 
  18. Hohenberg, P. C.; Martin, P. C. (2000). «Microscopic Theory of Superfluid Helium».Annals of Physics281 (1–2): 636-705 12091211.doi:10.1006/aphy.2000.6019. 
  19. Warner, Brent.«Introduction to Liquid Helium». NASA. Archivado desdeel original el 1 de septiembre de 2005. Consultado el 5 de enero de 2007. 
  20. Fairbank, H. A.; Lane, C. T. (1949).«Rollin Film Rates in Liquid Helium».Physical Review76 (8): 1209-1211.doi:10.1103/PhysRev.76.1209. 
  21. Rollin, B. V.; Simon, F. (1939). «On the "film" phenomenon of liquid helium II».Physica6 (2): 219-230.doi:10.1016/S0031-8914(39)80013-1. 
  22. Ellis, Fred M. (2005).«Third sound». Wesleyan Quantum Fluids Laboratory. Consultado el 23 de julio de 2008. 
  23. Bergman, D. (1949). «Hydrodynamics and Third Sound in Thin He II Films».Physical Review188 (1): 370-384.doi:10.1103/PhysRev.188.370. 
  24. abLide, D. R., ed. (2005), CRC Handbook of Chemistry and Physics (86th ed.), Boca Raton (FL): CRC Press,ISBN 0-8493-0486-5
  25. Hiby, Julius W. (1939). «Massenspektrographische Untersuchungen an Wasserstoff- und Heliumkanalstrahlen (H3+, H2-, HeH+, HeD+, He-)».Annalen der Physik426 (5): 473-487.doi:10.1002/andp.19394260506. |fechaacceso= requiere|url= (ayuda)
  26. Ming Wah Wong (2000). «Prediction of a Metastable Helium Compound: HHeF».Journal of the American Chemical Society122 (26): 6289-6290.doi:10.1021/ja9938175. 
  27. Grochala, W. (2009). «On Chemical Bonding Between Helium and Oxygen».Polish Journal of Chemistry83: 87-122. 
  28. «Collapse of helium’s chemical nobility predicted by Polish chemist». Archivado desdeel original el 19 de marzo de 2009. Consultado el 15 de mayo de 2009. 
  29. Saunders, Martin Hugo; Jiménez-Vázquez, A.; Cross, R. James; Poreda; Robert J. (1993). «Stable Compounds of Helium and Neon: He@C60 and Ne@C60».Science259 (5100): 1428-1430.PMID 17801275.doi:10.1126/science.259.5100.1428. 
  30. Saunders, M.et al. (1994). «Probing the interior of fullerenes by3He NMR spectroscopy of endohedral3He@C60 and3He@C70».Nature367: 256-258.doi:10.1038/367256a0. 
  31. abcEmsley, John (2001).Nature's Building Blocks. Oxford:Oxford University Press. pp. 175-179.ISBN 0-19-850341-5. 
  32. abWeiss, Achim.«Elements of the past: Big Bang Nucleosynthesis and observation».Max Planck Institute for Gravitational Physics. Archivado desdeel original el 8 de febrero de 2007. Consultado el 23 de junio de 2008. ;Coc, A.et al. (2004). «Updated Big Bang Nucleosynthesis confronted to WMAP observations and to the Abundance of Light Elements».Astrophysical Journal600: 544.doi:10.1086/380121. 
  33. abAnderson, Don L.; Foulger, G. R.; Meibom, A. (2 de septiembre de 2006).«Helium Fundamentals». MantlePlumes.org. Consultado el 20 de julio de 2008. 
  34. Novick, Aaron (1947).«Half-Life of Tritium».Physical Review72: 972-972.doi:10.1103/PhysRev.72.972.2. 
  35. Zastenker G. N.et al. (2002).«Isotopic Composition and Abundance of Interstellar Neutral Helium Based on Direct Measurements».Astrophysics45 (2): 131-142.doi:10.1023/A:1016057812964. Archivado desdeel original el 1 de octubre de 2007. Consultado el 20 de julio de 2008. 
  36. «Lunar Mining of Helium-3». Fusion Technology Institute of the University of Wisconsin-Madison. 19 de octubre de 2007. Archivado desdeel original el 4 de septiembre de 2006. Consultado el 9 de julio de 2008. 
  37. Slyuta, E. N.; Abdrakhimov, A. M.; Galimov, E. M. (2007).«The estimation of helium-3 probable reserves in lunar regolith»(PDF).Lunar and Planetary Science XXXVIII. Consultado el 20 de julio de 2008. 
  38. Hedman, Eric R. (16 de enero de 2006).«A fascinating hour with Gerald Kulcinski».The Space Review. Consultado el 20 de julio de 2008. 
  39. Oliver, B. M.; Bradley, James G. (1984). «Helium concentration in the Earth's lower atmosphere».Geochimica et Cosmochimica Acta48 (9): 1759-1767.doi:10.1016/0016-7037(84)90030-9. 
  40. «The Atmosphere: Introduction».JetStream - Online School for Weather.National Weather Service. 29 de agosto de 2007. Archivado desdeel original el 13 de enero de 2008. Consultado el 12 de julio de 2008. 
  41. Lie-Svendsen, Ø.; Rees, M. H. (1996). «Helium escape from the terrestrial atmosphere: The ion outflow mechanism».Journal of Geophysical Research101 (A2): 2435-2444.doi:10.1029/95JA02208. |fechaacceso= requiere|url= (ayuda)
  42. Strobel, Nick (2007).«Atmospheres».Nick Strobel's Astronomy Notes. Consultado el 25 de septiembre de 2007. 
  43. Cook, Melvine A. (1957). «Where is the Earth's Radiogenic Helium?».Nature179: 213.doi:10.1038/179213a0. 
  44. Aldrich, L. T.; Nier, Alfred O. (1948).«The Occurrence of He3 in Natural Sources of Helium».Phys. Rev.74: 1590-1594.doi:10.1103/PhysRev.74.1590. Consultado el 20 de julio de 2008. 
  45. Morrison, P.; Pine, J. (1955). «Radiogenic Origin of the Helium Isotopes in Rock».Annals of the New York Academy of Sciences62 (3): 71-92.doi:10.1111/j.1749-6632.1955.tb35366.x. 
  46. Zartman, R. E.; Wasserburg, G. J.; Reynolds, J. H. (1961).«Helium Argon and Carbon in Natural Gases».Journal of Geophysical Research66 (1): 277-306.doi:10.1029/JZ066i001p00277. Consultado el 21 de julio de 2008. 
  47. Broadhead, Ronald F. (2005).«Helium in New Mexico – geology distribution resource demand and exploration possibilities»(PDF).New Mexico Geology27 (4): 93-101. Archivado desdeel original el 31 de octubre de 2008. Consultado el 21 de julio de 2008. 
  48. Piqueras, Pedro (28 de junio de 2016).«El sorprendente hallazgo de helio en Tanzania que será un alivio para el mundo».Univision Noticias. Univision. Consultado el 20 de julio de 2016. 
  49. «Descubren el mayor yacimiento del mundo de helio en Tanzania».HispanTV. 29 de junio de 2016. Consultado el 20 de julio de 2016. 
  50. Winter, Mark (2008).«Helium: the essentials». University of Sheffield. Consultado el 14 de julio de 2008. 
  51. abSmith, E.M.; Goodwin, T.W.; Schillinger, J. (2003).«Challenges to the Worldwide Supply of Helium in the Next Decade»(PDF).Advances in Cryogenic Engineering. 49 A (710): 119-138.doi:10.1063/1.1774674. Archivado desdeel original el 25 de junio de 2008. Consultado el 20 de julio de 2008. 
  52. Cai, Z.et ál. (2007). University of Cambridge, ed.Modelling Helium Markets(PDF). Archivado desdeel original el 25 de junio de 2008. Consultado el 14 de julio de 2008. 
  53. Helium. «Mineral Commodity Summaries».U.S. Geological Survey. 2009: 74-75. Consultado el 19 de diciembre de 2009. 
  54. Belyakov, V.P.; Durgar'yan, S. G.; Mirzoyan, B. A. (1981). «Membrane technology—A new trend in industrial gas separation».Chemical and Petroleum Engineering17 (1): 19-21.doi:10.1007/BF01245721. 
  55. Committee on the Impact of Selling the Federal Helium Reserve, Commission on Physical Sciences, Mathematics, and Applications, Commission on Engineering and Technical Systems, National Research Council, ed. (2000).The Impact of Selling the Federal Helium Reserve. The National Academies Press.ISBN 0-309-07038-4.  Véase la tabla 4.2 para las reservas estimadas y la página 47 para las reservas estimadas no probadas[1][2].
  56. «Helio: El gas que hemos malgastado inflando globos».La Verdad. 11 de marzo de 2019. Consultado el 9 de enero de 2023. 
  57. Dee, P. I.; Walton E. T. S. (1933). «A Photographic Investigation of the Transmutation of Lithium and Boron by Protons and of Lithium by Ions of the Heavy Isotope of Hydrogen».Proceedings of the Royal Society of London141 (845): 733-742.doi:10.1098/rspa.1933.0151. 
  58. «Helium Supplies Endangered, Threatening Science And Technology?». Science Daily. 2008. Consultado el 26 de agosto de 2009. 
  59. Jenkins, Emily (2000).«A Helium Shortage?». Wired. Consultado el 26 de agosto de 2009. 
  60. «Por qué se han disparado los precios del helio en el mundo (y qué hace que este gas sea tan codiciado)».BBC News Mundo. Consultado el 9 de enero de 2023. 
  61. «Sanctions on Russia add to troubles facing global helium industry».RFI(en inglés). 3 de marzo de 2022. Consultado el 9 de enero de 2023. 
  62. Helium sell-off risks future supply. Michael Banks.Physics World. Jan. 27, 2010.accessed Feb. 27., 2010.Archivado el 23 de julio de 2010 enWayback Machine.
  63. Gráfica circular que muestra las fracciones de uso de helio en los Estados Unidos, obtenidas originalmente del Departamento del Interior de los Estados Unidos. U.S. Geological Survey, 1996, en «Mineral Industry Surveys: Helium. Reston, Va.: USGS. Taken from The Impact of Selling the Federal Helium Reserve».ISBN 0-309-07038-4;ISBN 978-0-309-07038-6. Capítulo 3, Figura 3.1, en[3]. Último acceso: 27-2-2010.
  64. «Physics in speech». phys.unsw.edu.au. Archivado desdeel original el 27 de junio de 2007. Consultado el 20 de julio de 2008. 
  65. Fowler, B; Ackles KN, Porlier G (1985).«Effects of inert gas narcosis on behavior—a critical review».Undersea Biomedical Research Journal12 (4): 369-402.PMID 4082343. Archivado desdeel original el 25 de diciembre de 2010. Consultado el 27 de junio de 2008. La referencia utiliza el parámetro obsoleto|coautores= (ayuda)
  66. Thomas, J. R. (1976).«Reversal of nitrogen narcosis in rats by helium pressure».Undersea Biomed Res.3 (3): 249-59.PMID 969027. Archivado desdeel original el 6 de diciembre de 2008. Consultado el 6 de agosto de 2008. 
  67. Rostain, J. C.; Gardette-Chauffour, M. C.; Lemaire, C.; Naquet, R. (1988).«Effects of a H2-He-O2 mixture on the HPNS up to 450 msw».Undersea Biomed. Res.15 (4): 257-70.OCLC 2068005.PMID 3212843. Archivado desdeel original el 25 de diciembre de 2010. Consultado el 24 de junio de 2008. 
  68. abConsidine, Glenn D., ed. (2005). «Helium».Van Nostrand's Encyclopedia of Chemistry. Wiley-Interscience. pp. 764-765.ISBN 0-471-61525-0. 
  69. Jack W. Ekin (2006).Experimental Techniques for Low-Temperature measurements. Oxford University Press.ISBN 0198570546. 
  70. Hablanian, M. H. (1997).High-vacuum technology: a practical guide. CRC Press. p. 493.ISBN 0824798341. 
  71. Beckwith, I.E.; Miller, C. G. (1990). «Aerothermodynamics and Transition in High-Speed Wind Tunnels at Nasa Langley».Annual Review of Fluid Mechanics22: 419-439.doi:10.1146/annurev.fl.22.010190.002223. 
  72. Morris, C.I. (2001).Shock Induced Combustion in High Speed Wedge Flows(PDF). Serie Stanford University Thesis. Archivado desdeel original el 4 de marzo de 2009. Consultado el 10 de marzo de 2010. 
  73. Belcher, James R.et al (1999). «Working gases in thermoacoustic engines».The Journal of the Acoustical Society of America105 (5): 2677-2684.PMID 10335618.doi:10.1121/1.426884. 
  74. Makhijani, Arjun; Gurney, Kevin (1995).Mending the Ozone Hole: Science, Technology, and Policy.MIT Press.ISBN 0262133083. 
  75. Jakobsson, H. (1997). «Simulations of the dynamics of the Large Earth-based Solar Telescope».Astronomical & Astrophysical Transactions13 (1): 35-46.doi:10.1080/10556799708208113. 
  76. Engvold, O.; Dunn, R.B.; Smartt, R. N.; Livingston, W. C. (1983).«Tests of vacuum VS helium in a solar telescope».Applied Optics22: 10-12.doi:10.1364/AO.22.000010. Consultado el 27 de julio de 2008. 
  77. «CERN - LHC: Facts and Figures».CERN. Archivado desdeLHC Guide booklet el original el 6 de julio de 2011. Consultado el 30 de abril de 2008. 
  78. Kochhar, R. K.«French astronomers in India during the 17th - 19th centuries»(en inglés). Consultado el 8 de marzo de 2010. 
  79. Sir Norman Lockyer - descubrimiento del helio (en inglés)".
  80. «Helium». Oxford English Dictionary. 2008. Consultado el 20 de julio de 2008. 
  81. Thomson, W. (1872).Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium. Rep. Brit. Assoc. xcix. 
  82. Stewart, Alfred Walter (2008).Recent Advances in Physical and Inorganic Chemistry. BiblioBazaar, LLC. p. 201.ISBN 0554805138. 
  83. Ramsay, William (1895). «On a Gas Showing the Spectrum of Helium, the Reputed Cause of D3 , One of the Lines in the Coronal Spectrum. Preliminary Note».Proceedings of the Royal Society of London58: 65-67.doi:10.1098/rspl.1895.0006. 
  84. Ramsay, William (1895). «Helium, a Gaseous Constituent of Certain Minerals. Part I».Proceedings of the Royal Society of London58: 80-89.doi:10.1098/rspl.1895.0010. 
  85. Ramsay, William (1895). «Helium, a Gaseous Constituent of Certain Minerals. Part II--».Proceedings of the Royal Society of London59: 325-330.doi:10.1098/rspl.1895.0097. 
  86. (en alemán)Langlet, N. A. (1895). «Das Atomgewicht des Heliums».Zeitschrift für anorganische Chemie(en alemán)10 (1): 289-292.doi:10.1002/zaac.18950100130. 
  87. Weaver, E.R. (1919). «Bibliography of Helium Literature».Industrial & Engineering Chemistry. 
  88. van Delft, Dirk (2008).«Little cup of Helium, big Science»(PDF).Physics today: 36-42. Archivado desdeel original el 25 de junio de 2008. Consultado el 20 de julio de 2008. 
  89. «Coldest Cold». Time Inc. 10 de junio de 1929. Archivado desdeel original el 21 de julio de 2013. Consultado el 27 de julio de 2008. 
  90. Kapitza, P. (1938). «Viscosity of Liquid Helium below the λ-Point».Nature141: 74.doi:10.1038/141074a0. 
  91. Osheroff, D. D.; Richardson, R. C.; Lee, D. M. (1972). «Evidence for a New Phase of Solid He3».Phys. Rev. Lett.28 (14): 885-888.doi:10.1103/PhysRevLett.28.885. 
  92. McFarland, D. F. (1903).«Composition of Gas from a Well at Dexter, Kan».Transactions of the Kansas Academy of Science19: 60-62.doi:10.2307/3624173. Consultado el 22 de julio de 2008. 
  93. «The Discovery of Helium in Natural Gas».American Chemical Society. 2004. Archivado desdeel original el 20 de mayo de 2006. Consultado el 20 de julio de 2008. 
  94. Cady, H.P.; McFarland, D. F. (1906). «Helium in Natural Gas».Science24 (611): 344.PMID 17772798.doi:10.1126/science.24.611.344. La referencia utiliza el parámetro obsoleto|coautores= (ayuda)
  95. Cady, H.P.; McFarland, D. F. (1906).«Helium in Kansas Natural Gas».Transactions of the Kansas Academy of Science20: 80-81.doi:10.2307/3624645. Archivado desdeel original el 27 de mayo de 2012. Consultado el 20 de julio de 2008. 
  96. Emme, Eugene M. comp., ed. (1961).«Aeronautics and Astronautics Chronology, 1920–1924».Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915–1960. Washington D. C.:NASA. pp. 11-19. Archivado desde el original|urlarchivo= requiere|url= (ayuda) el 14 de julio de 2019. Consultado el 20 de julio de 2008. 
  97. Hilleret, N. (1999).«Leak Detection»(PDF). En S. Turner, ed.CERN Accelerator School, vacuum technology: proceedings: Scanticon Conference Centre, Snekersten, Denmark, 28 May – 3 June 1999. Geneva, Switzerland:CERN. pp. 203-212. (enlace roto disponible enInternet Archive; véase elhistorial, laprimera versión y laúltima).
  98. Williamson, John G. (1968).«Energy for Kansas».Transactions of the Kansas Academy of Science (Kansas Academy of Science)71 (4): 432-438. Consultado el 27 de julio de 2008. 
  99. «Conservation Helium Sale»(PDF).Federal Register70 (193): 58464. 6 de octubre de 2005. Consultado el 20 de julio de 2008. 
  100. «Executive Summary». nap.edu. Consultado el 20 de julio de 2008. 
  101. Mullins, P.V.; Goodling, R. M. (1951).Helium. Bureau of Mines / Minerals yearbook 1949. pp. 599-602. Consultado el 20 de julio de 2008. 
  102. «Helium End User Statistic»(PDF). U.S. Geological Survey. Consultado el 20 de julio de 2008. 
  103. Kaplan, Karen H. (June 2007).«Helium shortage hampers research and industry».Physics Today60 (6) (American Institute of Physics). pp. 31-32.doi:10.1063/1.2754594. Archivado desdeel original el 4 de diciembre de 2008. Consultado el 20 de julio de 2008. 
  104. Basu, Sourish (octubre de 2007).«Updates: Into Thin Air». En Yam, Philip, ed.Scientific American (Scientific American, Inc.)297 (4): 18. Archivado desdeel original el 6 de diciembre de 2008. Consultado el 4 de agosto de 2008. 
  105. Ackerman MJ, Maitland G (1975).«Calculation of the relative speed of sound in a gas mixture».Undersea Biomed Res2 (4): 305-10.PMID 1226588. Archivado desdeel original el 27 de enero de 2011. Consultado el 9 de agosto de 2008. 
  106. abGrassberger, Martin; Krauskopf, Astrid (2007). «Suicidal asphyxiation with helium: Report of three cases Suizid mit Helium Gas: Bericht über drei Fälle».Wiener Klinische Wochenschrift(en alemán & English)119 (9–10): 323-325.PMID 17571238.doi:10.1007/s00508-007-0785-4. 
  107. abEngber, Daniel (13 de junio de 2006).«Stay Out of That Balloon!». Slate.com. Consultado el 14 de julio de 2008. 
  108. Rostain J. C., Lemaire C., Gardette-Chauffour M.C., Doucet J., Naquet R. (1983).«Estimation of human susceptibility to the high-pressure nervous syndrome».J Appl Physiol54 (4): 1063-70.PMID 6853282. Archivado desdeel original el 28 de junio de 2012. Consultado el 9 de agosto de 2008. 
  109. Hunger Jr, W. L.; Bennett., P. B. (1974).«The causes, mechanisms and prevention of the high pressure nervous syndrome».Undersea Biomed. Res.1 (1): 1-28.OCLC 2068005.PMID 4619860. Archivado desdeel original el 25 de diciembre de 2010. Consultado el 9 de agosto de 2008. 

Enlaces externos

[editar]
Control de autoridades
Obtenido de «https://es.wikipedia.org/w/index.php?title=Helio&oldid=169921422»
Categorías:
Categorías ocultas:

[8]ページ先頭

©2009-2026 Movatter.jp