Laarenisca opsamita es unaroca sedimentaria de tipodetrítico, de color variable, que contieneclastos de tamañoarena. Tras laslutitas son las rocas sedimentarias más comunes en lacorteza terrestre.[2] Las areniscas contienen espacios intersticiales entre sus granos.[2] En rocas de origen reciente estos espacios están sin material sólido mientras que en rocas antiguas se encuentran rellenos de unamatriz o decemento desílice ocarbonato de calcio.[2] Si los espacios intersticiales no están totalmente rellenos de mineralesprecipitados, y hay ciertaporosidad, estos pueden estar llenos de agua opetróleo.[1] En cuanto a los granos se componen decuarzo,feldespato o fragmentos de roca.[2] La arenisca se emplea, entre otros usos, como material de construcción y comopiedra de afilar.[1]
A medida que los sedimentos se van acumulando en el entorno deposicional, la arena más antigua es enterrada por los sedimentos más jóvenes, y sufrediagénesis. Esta consiste principalmente encompactación ylitificación de la arena.[7][8] Las primeras etapas de la diagénesis, descritas comoeogénesis, tienen lugar a poca profundidad (unas decenas de metros) y se caracterizan por labioturbación y los cambios mineralógicos en las arenas, con sólo una ligera compactación.[9] Lahematita roja que da a las areniscas delecho rojo su color se forma probablemente durante la eogénesis.[10][11] El enterramiento más profundo va acompañado de lamesogénesis, durante la cual tiene lugar la mayor parte de la compactación y litificación.[8]
La compactación tiene lugar a medida que la arena se ve sometida a una presión creciente por parte de los sedimentos suprayacentes. Los granos de los sedimentos se desplazan hacia disposiciones más compactas, los granos dúctiles (como los demica) se deforman y el espacio de los poros se reduce. Además de esta compactación física, puede producirse una compactación química a través de lasolución a presión. Los puntos de contacto entre los granos están sometidos a la mayor tensión, y el mineral tensionado es más soluble que el resto del grano. Como resultado, los puntos de contacto se disuelven, permitiendo que los granos entren en contacto más estrecho.[8]
La litificación sigue de cerca a la compactación, ya que el aumento de las temperaturas en profundidad acelera la deposición decemento que une los granos. La solución a presión contribuye a la cementación, ya que el mineral disuelto en los puntos de contacto tensados se vuelve a depositar en los espacios porosos no tensados.[8]
La compactación mecánica tiene lugar principalmente a profundidades inferiores a 1000 m. La compactación química continúa hasta profundidades de 2000 m, y la mayor parte de la cementación tiene lugar a profundidades de 2000 a 5000 m.[12]
El desprendimiento de la arenisca enterrada va acompañado de latelogénesis, la tercera y última etapa de la diagénesis.[9] A medida que la erosión reduce la profundidad del enterramiento, la renovada exposición alagua meteórica produce cambios adicionales en la arenisca, como la disolución de parte del cemento para producirporosidad secundaria.[8]
Paradise Quarry,Sídney, AustraliaGrus arena y el granitoide del que deriva
Los granos de la estructura son fragmentos detríticos del tamaño de la arena ( 0,0625 a 2 mm de diámetro) que constituyen el grueso de una arenisca.[13][14] La mayoría de los granos de armazón están compuestos porcuarzo ofeldespato, que son los minerales comunes más resistentes a los procesos demeteorización en la superficie de la Tierra, como se observa en laserie de disolución de Goldich.[15] Los granos de la estructura pueden clasificarse en varias categorías diferentes en función de su composición mineral:
El cuarzo es el mineral que forma los granos de la mayoría de rocas sedimentarias clásticas; esto se debe a que tienen propiedades físicas excepcionales, como la dureza y la estabilidad química.[16] Estas propiedades hacen que los granos de cuarzo puedan sobrevivir múltiples eventos, a la vez que permiten que los granos puedan adoptar cierto grado de redondez.[16] Los granos de cuarzo proceden de rocas plutónicas félsicas o de areniscas más antiguas que han sido recicladas.
Los feldespatos son habitualmente el segundo mineral más abundante en las areniscas.[16] El feldespato se peuede dividir en feldespatos alcalinos y feldespatos plagioclasos, los cuales es posible distinguir utilizando un microscopio petrográfico.[16]
El feldespato alcalino posee composición química que va desde KAlSi3O8 a NaAlSi3O8.[16]
Lasplagioclasas poseen una composición que comprende desde NaAlSi3O8 hasta CaAl2Si2O8.[16]
Fotomicrografía de ungrano de arena volcánica; la imagen superior es con luz polarizada plana, la imagen inferior es luz polarizada cruzada, el cuadro de escala en el centro de la izquierda es de 0,25 milímetros. Este tipo de grano sería un componente principal de una arenisca lítica.
Los granos de estructura lítica (también llamados fragmentos líticos o clastos líticos) son fragmentos de roca madre antigua que no se han desgastado hasta convertirse en granos de minerales individuales.[16] Los fragmentos líticos pueden ser cualquier roca ígnea, metamórfica o sedimentaria de grano fino o grueso,[16] aunque los fragmentos líticos más comunes encontrados en las rocas sedimentarias son clastos de rocas volcánicas y metamórficas.[16].
Los minerales accesorios son todos los demás granos minerales de una arenisca. Estos minerales suelen constituir sólo un pequeño porcentaje de los granos de una arenisca. Los minerales accesorios más comunes son las micas (moscovita ybiotita), elolivino, elpiroxeno y elcorindón.[16][17] Muchos de estos granos accesorios son más densos que los silicatos que componen el grueso de la roca. Estosminerales pesados suelen ser resistentes a la meteorización y pueden utilizarse como indicador de la madurez de la arenisca a través delíndice ZTR.[18] Entre los minerales pesados más comunes se encuentran elcircón, laturmalina, elrutilo (de ahí lo deZTR), elgranate, lamagnetita u otros minerales densos y resistentes derivados de la roca madre.
Lamatriz es un material muy fino, que está presente dentro del espacio de poros intersticial entre los granos de la estructura.[16] La naturaleza de la matriz dentro del espacio de poros intersticial da lugar a una doble clasificación:
Las arenitas son areniscas texturalmentelimpias que están libres de matriz o tienen muy poca.[17]
Los wackes son areniscas texturalmentesucias que tienen una cantidad significativa de matriz.[14]
El cemento es lo que une los granos de la estructura siliciclástica. El cemento es un mineral secundario que se forma después de la deposición y durante el enterramiento de la arenisca.[16] Estos materiales de cementación pueden ser minerales de silicato o minerales no silicatos, como la calcita.[16]
El cemento de sílice puede consistir en minerales de cuarzo uópalo. El cuarzo es el mineral de silicato más común que actúa como cemento. En las areniscas en las que hay cemento de sílice, los granos de cuarzo están unidos al cemento, lo que crea un borde alrededor del grano de cuarzo llamado sobrecrecimiento. El sobrecrecimiento mantiene la misma continuidad cristalográfica del grano de la estructura de cuarzo que está siendo cementado. El cemento opalino se encuentra en areniscas ricas en materialesvolcanogénicos, y muy raramente en otras areniscas.[16]
El cemento de calcita es el cemento carbonatado más común. El cemento de calcita es un conjunto de cristales de calcita más pequeños. El cemento se adhiere a los granos de la estructura, cementando los granos de la estructura juntos.[16]
La arenisca que pierde su cemento aglutinante mediante procesos de erosión se tornafriable e inestable. Este proceso puede ser revertido en parte mediante la aplicación de ortosilicato tetraetilo (Si(OC2H5)4) el cual deposita dióxido de silicio amorfo entre los granos de arena.[19] La reacción es:
El espacio de poros incluye los espacios vacíos dentro de una roca o suelo.[20] El espacio de poros en una roca posee una relación directa con laporosidad ypermeabilidad de la roca. La porosidad y la permeabilidad están directamente influenciadas por la forma en que los granos de arena están empaquetados.[16]
La porosidad es el porcentaje del volumen total que está ocupado por los intersticios dentro de una roca determinada.[20] La porosidad está directamente influenciada por el empaquetamiento de los granos esféricos de tamaño uniforme, reordenados desde el empaquetamiento más flojo al más apretado en las areniscas.[16]
La permeabilidad es la velocidad a la que el agua u otros fluidos fluyen a través de la roca. En el caso de lasaguas subterráneas, la permeabilidad de trabajo puede medirse en litros por día a través de una sección transversal de un metro cuadrado bajo ungradiente hidráulico unitario.[20]
Las areniscas características de diferentes lugares reciben nombres locales muy variados, por ejemplo elalbero es una calcarenita de la comarca de Los Alcores en Sevilla, en Argentina lacuarzoarenita es llamadapiedra Mar del Plata.[23]
Cavidades en una pared de arenisca estratificada.Tumbas cavadas en arenisca enPetra,Jordania.
El cuadrilátero principal de laUniversidad de Sídney, una de las llamadasuniversidades de piedra arenisca.Estatua de piedra areniscaMaría Inmaculada de Fidelis Sporer, alrededor de 1770, enFriburgo,Alemania.Lámpara de arenisca de 17.000 años de antigüedad descubierta en las cuevas deLascaux,Francia
La arenisca se ha utilizado desde la prehistoria para la construcción,[24][25][26] y herramientas.[27] Se ha empleado ampliamente en todo el mundo en la construcción de templos,[28] iglesias,[29] viviendas y otros edificios, y eningeniería civil.[30]
Aunque su resistencia a la intemperie varía, la arenisca es fácil de trabajar. Eso hace que sea un material común deconstrucción ypavimentación, incluso enhormigón asfáltico. Sin embargo, algunos tipos que se han utilizado en el pasado, como la arenisca de Collyhurst utilizada en elnoroeste de Inglaterra, han tenido una escasa resistencia a la intemperie a largo plazo, lo que ha obligado a reparar y sustituir los edificios más antiguos.[31] Debido a la dureza de los granos individuales, la uniformidad del tamaño del grano y lafriabilidad de su estructura, algunos tipos de piedra arenisca son materiales excelentes para hacerpiedras de afilar, para afilar cuchillas y otros implementos.[32] La piedra arenisca no friable puede utilizarse para fabricar piedras de moler el grano.
Un tipo de arenisca de cuarzo puro, la ortocuarcita, con más del 90-95 por ciento de cuarzo,[33] ha sido propuesto para su nominación a laGlobal Heritage Stone Resource.[34] En algunas regiones de Argentina, lafachada de piedra ortocuarcita es una de las principales características de los búngalos delestilo marplatense.[34]
↑Leeder, M. R. (2011).Sedimentología y cuencas sedimentarias : de la turbulencia a la tectónica (2ª edición). Chichester, West Sussex, Reino Unido: Wiley-Blackwell. pp. 3-28.ISBN9781405177832.
↑abChoquette, P.W.; Pray, L.C. (1970). «Nomenclatura geológica y clasificación de la porosidad en carbonatos sedimentarios».AAPG Bulletin54.
↑Walker, Theodore R.; Waugh, Brian; Grone, Anthony J. (1 de enero de 1978). «Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern United States and northwestern Mexico».GSA Bulletin89 (1): 19-32.Bibcode:1978GSAB...89...19W.
↑abcdefghijklmnñopqBoggs, Sam (2006). Principles of sedimentology and stratigraphy (4th ed.). Upper Saddle River, N.J.: Pearson Prentice Hall. pp. 119–135.ISBN 0131547283.
↑abProthero, D. (2004). Sedimentary Geology. New York, NN: W.H. Freeman and Company
↑Prothero, D. R. y Schwab, F., 1996, Sedimentary Geology, p. 460,ISBN0-7167-2726-9
↑Zárraga, Ramón; Alvarez-Gasca, Dolores E.; Cervantes, Jorge (1 de septiembre de 2002). «Solvent effect on TEOS film formation in the sandstone consolidation process».Silicon Chemistry1 (5): 397-402.S2CID93736643.doi:10.1023/B:SILC.0000025602.64965.e7.
↑abcJackson, J. (1997). Glossary of Geology. Alexandria, VA: American Geological InstituteISBN3-540-27951-2
↑Applegate, Alex; Zedeño, Nieves (2001). «Site E-92-8: A Late Prehistoric C-Group Component at Nabta Playa».Holocene Settlement of the Egyptian Sahara: 529-533.ISBN978-1-4613-5178-8.doi:10.1007/978-1-4615-0653-9_19.
↑Royden, Mike.«The Calderstones». Mike Royden. Archivado desdehtm el original el 25 de julio de 2008. Consultado el 20 de julio de 2009.
↑Smith, Kevin N.; Vellanoweth, René L.; Sholts, Sabrina B.; Wärmländer, Sebastian K.T.S. (August 2018). «El análisis de residuos, los patrones de uso y los estudios de réplica indican que las herramientas de arenisca se utilizaron como escariadores al producir anzuelos de concha en la isla de San Nicolás, California».Journal of Archaeological Science: Reports20: 502-505.doi:10.1016/j.jasrep.2018.05.011.
↑Saleh, Saleh A.; Helmi, Fatma M.; Kamal, Monir M.; E. El-Banna-a1, Abdel-Fattah (Mayo 1992). «Estudio y consolidación de la piedra arenisca: Templo de Karnak, Luxor, Egipto».Studies in Conservation37 (2): 93-104.doi:10.1179/sic.1992.37.2.93.
↑Saleh, Saleh A.; Helmi, Fatma M.; Kamal, Monir M.; E. El-Banna-a1, Abdel-Fattah (May 1992). «Estudio y consolidación de la piedra arenisca: Templo de Karnak, Luxor, Egipto».Studies in Conservation37 (2): 93-104.doi:10.1179/sic.1992.37.2.93.
↑Grissom, Carol A.; Aloiz, Emily M.; Vicenzi, Edward P.; Livingston, Richard A. (2020). «Seneca sandstone: a heritage stone from the USA».Geological Society, London, Special Publications486 (1): 163-176.Bibcode:..163G 2020GSLSP.486 ..163G.S2CID134230768.doi:10.1144/SP486.4.
Folk, R.L., 1965, Petrology of sedimentary rocks PDF version. Austin: Hemphill's Bookstore. 2nd ed. 1981,ISBN 0-914696-14-9.
Pettijohn F. J., P.E. Potter and R. Siever, 1987, Sand and sandstone, 2nd ed. Springer-Verlag.ISBN 0-387-96350-2.
Scholle, P.A., 1978, A Color illustrated guide to constituents, textures, cements, and porosities of sandstones and associated rocks, American Association of Petroleum Geologists Memoir no. 28.ISBN 0-89181-304-7.
Scholle, P.A., and D. Spearing, 1982, Sandstone depositional environments: clastic terrigenous sediments , American Association of Petroleum Geologists Memoir no. 31.ISBN 0-89181-307-1.
USGS Minerals Yearbook: Stone, Dimension, Thomas P. Dolley, U.S. Dept. of the Interior, 2005 (format: PDF).