Movatterモバイル変換


[0]ホーム

URL:


Ir al contenido
WikipediaLa enciclopedia libre
Buscar

Ácido desoxirribonucleico

Artículo destacado
De Wikipedia, la enciclopedia libre
(Redirigido desde «ADN»)
«ADN»  y «DNA» redirigen aquí. Para otras acepciones, véanseADN (desambiguación) yDNA (desambiguación).
Ubicación y estructura del ADN en unacélula eucariota. Durante ladivisión celular, el ADN se agrupa encromosomas. El resto del tiempo, se encuentra disperso en forma decromatina.
Animación de parte de una estructura de ADN de doble hélice.

Elácido desoxirribonucleico —conocido por las siglasADN— es unácido nucleico que contiene las instruccionesgenéticas fundamentales para eldesarrollo, funcionamiento yreproducción de todos losseres vivos[1]​ y algunosvirus (losvirus ADN); también es responsable de la transmisiónhereditaria.[2]​ La función principal de lamolécula de ADN es el almacenamiento a largo plazo deinformación para construir otros componentes de lascélulas, como lasproteínas y las moléculas deARN. Los segmentos de ADN que llevan esta información genética son llamadosgenes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética y biológica.

Desde el punto de vistaquímico, el ADN es unpolímero de nucleótidos, es decir, unpolinucleótido.[3]​ Cadanucleótido, a su tiempo, está formado por un glúcido (ladesoxirribosa), unabase nitrogenada (que puede seradeninaA,timinaT,citosinaC oguaninaG) y un grupofosfato (derivado delácido fosfórico). Lo que distingue a un polinucleótido de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando solo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena es la que codifica la información genética, siguiendo el siguiente criterio de complementariedad: A‑T y G‑C. Esto se debe a que la adenina y la guanina son de mayor tamaño que la timina y la citosina, por lo que este criterio permite cumplir una uniformidad. En los seres vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadaspuentes de hidrógeno.[4][5]

Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Lasmoléculas de ARN se copian exactamente del ADN mediante un proceso denominadotranscripción. Una vez procesadas en elnúcleo celular, las moléculas de ARN pueden salir alcitoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando elcódigo genético, que especifica la secuencia de losaminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario «secuencia de nucleótido-secuencia de aminoácidos» permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGCATCG...), la ADNpolimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que seríaTAC‑GAT‑CGT‑AGC‑...) para transcribir una molécula de ARNm que se leeríaAUG‑CUA‑GCA‑UCG‑...; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidosmetionina-leucina-ácido aspártico-arginina-...

Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominangenes. Cada gen contiene una parte que setranscribe a ARN y otra que se encarga de definir cuándo y dónde debenexpresarse. La información contenida en los genes (genética) se emplea para generar ARN yproteínas, que son los componentes básicos de las células, los «ladrillos» que se utilizan para la construcción de losorgánulos u organelos celulares, entre otras funciones.

Dentro de las células, el ADN está organizado en estructuras llamadascromosomas que, durante elciclo celular, seduplican antes de que la célula sedivida. Losorganismos eucariotas (por ejemplo,animales,plantas yhongos) almacenan la mayor parte de su ADN dentro delnúcleo celular y una mínima parte enelementos celulares llamadosmitocondrias, y en losplastos y los centros organizadores demicrotúbulos ocentríolos, en caso de tenerlos; losorganismos procariotas (bacterias yarqueas) lo almacenan en elcitoplasma de la célula y, por último, los virus ADN lo hacen en el interior de lacápside de naturaleza proteica. Existen multitud de proteínas, como por ejemplo lashistonas y losfactores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Losfactores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denominagenoma y, con pequeñas variaciones, es característico de cadaespecie.

Historia

Artículo principal: Historia de la genética
Friedrich Miescher, biólogo y médico suizo (1844‑1895).

El ADN fue aislado por primera vez durante 1869, por el médicosuizoFriedrich Miescher, mientras trabajaba en laUniversidad de Tubinga. Miescher realizaba experimentos acerca de la composición química delpus de vendasquirúrgicas desechadas cuando notó un precipitado de una sustancia desconocida que caracterizó químicamente más tarde.[6][7]​ Lo llamónucleína, debido a que lo había extraído a partir de núcleos celulares.[8]​ Se necesitaron casi 70 años de investigación para poder identificar loscomponentes y laestructura de los ácidos nucleicos.

En 1919Phoebus Levene identificó que un nucleótido está formado por unabase nitrogenada, unazúcar y unfosfato.[9]​ Levene sugirió que el ADN generaba una estructura con forma desolenoide (muelle) con unidades de nucleótidos unidos a través de los grupos fosfato. En 1930 Levene y su maestroAlbrecht Kossel probaron que la nucleína de Miescher es un ácido desoxirribonucleico (ADN) formado por cuatro bases nitrogenadas (citosina (C),timina (T),adenina (A) yguanina (G), el azúcar desoxirribosa y un grupo fosfato, y que, en suestructura básica, el nucleótido está compuesto por un azúcar unido a la base y al fosfato.[10]​ Sin embargo, Levene pensaba que la cadena era corta y que las bases se repetían en un orden fijo. En 1937William Astbury produjo el primer patrón dedifracción de rayos X que mostraba que el ADN tenía una estructura regular.[11]

Maclyn McCarty conFrancis Crick yJames D. Watson.

La función biológica del ADN comenzó a dilucidarse en 1928, con una serie básica de experimentos de la genética moderna realizados porFrederick Griffith, quien estaba trabajando con cepas «lisas» (S) o «rugosas» (R) de la bacteriaPneumococcus (causante de la neumonía), según la presencia (S) o no (R) de una cápsula azucarada, que es la que confiere virulencia (véase tambiénexperimento de Griffith). La inyección de neumococos S vivos en ratones produce la muerte de estos, y Griffith observó que, si inyectaba ratones con neumococos R vivos o con neumococos S muertos por calor, los ratones no morían. Sin embargo, si inyectaba a la vez neumococos R vivos y neumococos S muertos, los ratones morían, y en su sangre se podían aislar neumococos S vivos. Como las bacterias muertas no pudieron haberse multiplicado dentro del ratón, Griffith razonó que debía producirse algún tipo de cambio o transformación de un tipo bacteriano a otro por medio de una transferencia de alguna sustancia activa, que denominóprincipio transformante. Esta sustancia proporcionaba la capacidad a los neumococos R de producir una cápsula azucarada y transformarse así en virulentas. En los siguientes 15 años, estos experimentos iniciales se replicaron mezclando distintos tipos de cepas bacterianas muertas por el calor con otras vivas, tanto en ratones (in vivo) como en tubos de ensayo (in vitro).[12]​ La búsqueda del «factor transformante» que era capaz de hacer virulentas a cepas que inicialmente no lo eran continuó hasta 1944, año en el cualOswald Avery,Colin MacLeod yMaclyn McCarty realizaron un experimento hoy clásico. Estos investigadores extrajeron la fracción activa (el factor transformante) y, mediante análisis químicos, enzimáticos yserológicos, observaron que no contenía proteínas, ni lípidos no ligados, ni polisacáridos activos, sino que estaba constituido principalmente por «una forma viscosa de ácido desoxirribonucleico altamente polimerizado», es decir, ADN. El ADN extraído de las cepas bacterianas S muertas por el calor lo mezclaronin vitro con cepas R vivas: el resultado fue que se formaron colonias bacterianas S, por lo que se concluyó inequívocamente que el factor o principio transformante era el ADN.[13]

A pesar de que la identificación del ADN como principio transformante aún tardó varios años en ser universalmente aceptada, este descubrimiento fue decisivo en el conocimiento de la base molecular de la herencia, y constituye el nacimiento de lagenética molecular. Finalmente, el papel exclusivo del ADN en la heredabilidad fue confirmado en 1952 mediante los experimentos deAlfred Hershey yMartha Chase, en los cuales comprobaron que elfago T2 transmitía su información genética en su ADN, pero no en su proteína[14]​ (véase tambiénexperimento de Hershey y Chase).

En cuanto a la caracterización química de la molécula,Chargaff realizó en 1940 algunos experimentos que le sirvieron para establecer lasproporciones de las bases nitrogenadas en el ADN. Descubrió que las proporciones de purinas eran idénticas a las de pirimidinas, la «equimolecularidad» de las bases ([A]=[T], [G]=[C]) y el hecho de que la cantidad de G+C en una determinada molécula de ADN no siempre es igual a la cantidad de A+T y puede variar desde el 36 hasta el 70 por ciento del contenido total.[10]​ Con toda esta información y junto con los datos dedifracción de rayos X proporcionados porRosalind Franklin,James Watson yFrancis Crick propusieron en 1953 el modelo de lahélice doble de ADN para representar laestructura tridimensional delpolímero.[15]​ En una serie de cinco artículos en el mismo número deNature se publicó la evidencia experimental que apoyaba el modelo de Watson y Crick.[16]​ De estos, el artículo deFranklin yRaymond Gosling fue la primera publicación con datos de difracción de rayos X que apoyaba el modelo de Watson y Crick,[17][18]​ y en ese mismo número deNature también aparecía un artículo sobre la estructura del ADN deMaurice Wilkins y sus colaboradores.[19]

Watson, Crick y Wilkins recibieron conjuntamente, en 1962, después de la muerte de Rosalind Franklin, elPremio Nobel en Fisiología o Medicina.[20]​ Sin embargo, el debate continúa sobre quién debería recibir crédito por el descubrimiento.[21]

Propiedades físicas y químicas

Estructuraquímica del ADN: dos cadenas de nucleótidos conectadas mediantepuentes de hidrógeno, que aparecen como líneas punteadas.

El ADN es un largopolímero formado por unidades repetitivas, losnucleótidos.[22][23]​ Una doble cadena de ADN mide de 22 a 26ángstroms (2.2 a 2.6nanómetros) de ancho, y una unidad (un nucleótido) mide 3.3 Å (0.33 nm) de largo.[24]​ Aunque cada unidad individual que se repite es muy pequeña, los polímeros de ADN pueden sermoléculas enormes que contienen millones denucleótidos. Por ejemplo, el cromosoma humano más largo, elcromosoma número 1, tiene aproximadamente 220 millones depares de bases.[25]

En losseres vivos, el ADN no suele existir como una molécula individual, sino como una pareja de moléculas estrechamente asociadas. Las dos cadenas de ADN se enroscan sobre sí mismas formando una especie de escalera de caracol, denominada «hélice doble». El modelo de estructura en doble hélice fue propuesto en 1953 porJames Watson yFrancis Crick (el artículo «Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid» fue publicado el 25 de abril de 1953 enNature), después de obtener una imagen de la estructura de doble hélice gracias a la refracción por rayos X hecha porRaymond Gosling.[26][27]​ El éxito de este modelo radicaba en su consistencia con las propiedades físicas y químicas del ADN. El estudio mostraba, además, que lacomplementariedad de bases podía ser relevante en sureplicación, y también la importancia de la secuencia de bases como portadora de información genética.[28][29][30]​ Cada unidad que se repite, el nucleótido, contiene un segmento de la estructura de soporte (azúcar + fosfato), que mantiene la cadena unida, y unabase, que interacciona con la otra cadena de ADN en la hélice. En general, una base ligada a un azúcar se denominanucleósido y una base ligada a un azúcar y a uno o más grupos fosfatos se denominanucleótido.

Cuando muchos nucleótidos están unidos, como ocurre en el ADN, el polímero resultante se denominapolinucleótido.[31]

Componentes

Estructura de soporte:La estructura de soporte de una hebra deADN está formada por unidades alternas de gruposfosfato yazúcar (desoxirribosa).[32]​ El azúcar en el ADN es una pentosa, específicamente, ladesoxirribosa.

Enlace fosfodiéster. Elgrupo fosfato (PO43-) une elcarbono 5' delazúcar de unnucleósido con elcarbono 3' del siguiente.
Sufórmula química es H3PO4. Cadanucleótido puede contener uno (monofosfato:AMP), dos (difosfato:ADP) o tres (trifosfato:ATP) grupos de ácido fosfórico, aunque como monómeros constituyentes de losácidos nucleicos solo aparecen como nucleósidos monofosfato.
Es unmonosacárido de 5átomos decarbono (unapentosa) derivado de laribosa, que es parte de la estructura de nucleótidos del ADN. Su fórmula química es C5H10O4. Una de las diferencias principales entre elADN y elARN es elazúcar, pues en el ARN la 2‑desoxirribosa del ADN es reemplazada por unapentosa alternativa, laribosa.[30]
Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que formanenlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación deenlace= asimétricos implica que cada hebra de ADN tiene una dirección. En unahélice doble, la dirección de losnucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denominaantiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominanextremo 5′ («cinco prima») yextremo 3′ («tres prima»), respectivamente.
Las cuatro bases nitrogenadas mayoritarias que se encuentran en elADN son laadenina (A), lacitosina (C), laguanina (G) y latimina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases soncompuestos heterocíclicos yaromáticos con dos o másátomos denitrógeno, y, dentro de las bases mayoritarias, se clasifican en dos grupos: lasbases púricas opurinas (adenina y guanina), derivadas de la purina y formadas por dos anillos unidos entre sí, y lasbases pirimidínicas obases pirimídicas opirimidinas (citosina y timina), derivadas de la pirimidina y con un solo anillo.[30]​ En los ácidos nucleicos existe una quinta base pirimidínica, denominadauracilo (U), que normalmente ocupa el lugar de la timina en elARN y difiere de esta en que carece de un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, solo aparece raramente como un producto residual de la degradación de la citosina por procesos de desaminación oxidativa.
Timina: 2, 4-dioxo, 5-metilpirimidina.
En elcódigo genético se representa con la letraT. Es un derivado pirimidínico con ungrupo oxo en las posiciones 2 y 4, y ungrupo metil en la posición 5. Forma elnucleósidotimidina (siempre desoxitimidina, ya que solo aparece en el ADN) y elnucleótidotimidilato o timidina monofosfato (dTMP). En el ADN, la timina siempre seempareja con la adenina de la cadena complementaria mediante 2puentes de hidrógeno,T = A. Su fórmula química es C5H6N2O2 y su nomenclatura 2, 4‑dioxo, 5‑metilpirimidina.
Citosina: 2-oxo, 4-aminopirimidina.
En el código genético se representa con la letraC. Es un derivado pirimidínico, con ungrupo amino en posición 4 y un grupo oxo en posición 2. Forma elnucleósidocitidina (desoxicitidina en el ADN) y elnucleótidocitidilato o (desoxi)citidina monofosfato (dCMP en el ADN, CMP en el ARN). La citosina siempre seempareja en el ADN con la guanina de la cadena complementaria mediante un enlace triple,C≡G. Su fórmula química es C4H5N3O y su nomenclatura 2‑oxo, 4 aminopirimidina. Sumasa molecular es de 111.1unidades de masa atómica. La citosina se descubrió en 1894, al aislarla del tejido deltimo de carnero.
Adenina: 6‑aminopurina.
En el código genético se representa con la letraA. Es un derivado de la purina con un grupo amino en la posición 6. Forma el nucleósidoadenosina (desoxiadenosina en el ADN) y el nucleótidoadenilato o (desoxi)adenosina monofosfato (dAMP, AMP). En el ADN siempre seempareja con la timina de la cadena complementaria mediante 2 puentes de hidrógeno,A = T. Su fórmula química es C5H5N5 y su nomenclatura 6‑aminopurina. La adenina, junto con la timina, fue descubierta en 1885 por el médico alemánAlbrecht Kossel.
Guanina: 6‑oxo, 2‑aminopurina.
En el código genético se representa con la letraG. Es un derivado púrico con un grupo oxo en la posición 6 y un grupo amino en la posición 2. Forma el nucleósido (desoxi)guanosina y el nucleótidoguanilato o (desoxi)guanosina monofosfato (dGMP, GMP). La guanina siempre seempareja en el ADN con la citosina de la cadena complementaria mediante tres enlaces de hidrógeno,G≡C. Su fórmula química es C5H5N5O y su nomenclatura 6‑oxo, 2‑aminopurina.

También existen otras bases nitrogenadas (las llamadasbases nitrogenadas minoritarias), derivadas de forma natural o sintética de alguna otra base mayoritaria. Lo son por ejemplo lahipoxantina, relativamente abundante en elARNt, o lacafeína, ambas derivadas de la adenina; otras, como elaciclovir, derivadas de la guanina, son análogos sintéticos usados en terapia antivírica; otras, como una de las derivadas del uracilo, son antitumorales.

Las bases nitrogenadas tienen una serie de características que les confieren unas propiedades determinadas. Una característica importante es su carácteraromático, consecuencia de la presencia en el anillo de dobles enlaces en posición conjugada. Ello les confiere la capacidad de absorber luz en la zonaultravioleta delespectro en torno a los 260 nm, lo cual puede aprovecharse para determinar elcoeficiente de extinción del ADN y hallar la concentración existente de los ácidos nucleicos. Otra de sus características es que presentantautomería oisomería de grupos funcionales, debido a que un átomo dehidrógeno unido a otro átomo puede migrar a una posición vecina; en las bases nitrogenadas se dan dos tipos de tautomerías: tautomeríalactama-lactima, donde el hidrógeno migra del nitrógeno aloxígeno del grupo oxo (forma lactama) y viceversa (forma lactima), y tautomeríaimina-amina primaria, donde el hidrógeno puede estar formando el grupo amina (forma amina primaria) o migrar al nitrógeno adyacente (forma imina). La adenina solamente puede presentar tautomería amina-imina, la timina y el uracilo muestran tautomería doble lactama-lactima, y la guanina y citosina pueden presentar ambas. Por otro lado, y aunque se trate de moléculasapolares, las bases nitrogenadas presentan suficiente carácterpolar como para establecerpuentes de hidrógeno, ya que tienen átomos muyelectronegativos (nitrógeno y oxígeno) que presentan carga parcial negativa, y átomos de hidrógeno con carga parcial positiva, de manera que se forman dipolos que permiten que se formen estosenlaces débiles.

Se estima que elgenoma humanohaploide tiene alrededor de 3000 millones de pares de bases. Para indicar el tamaño de las moléculas de ADN se indica el número de pares de bases, y como derivados hay dos unidades de medida muy utilizadas, lakilobase (kb), que equivale a 1000 pares de bases, y lamegabase (Mb), que equivale a un millón de pares de bases.

Apareamiento de bases

Véase también:Par de bases
Un par de basesC≡G con trespuentes de hidrógeno
Un parA=T con dos puentes de hidrógeno. Los puentes de hidrógeno se muestran como líneas discontinuas.

La hélice doble de ADN se mantiene estable mediante la formación depuentes de hidrógeno entre las bases asociadas a cada una de las dos hebras. Para la formación de unenlace de hidrógeno una de las bases debe presentar un «donador» de hidrógenos con un átomo de hidrógeno con carga parcial positiva (-NH2 o -NH) y la otra base debe presentar un grupo «aceptor» de hidrógenos con un átomo cargadoelectronegativamente (C=O o N). Los puentes de hidrógeno son uniones más débiles que los típicosenlaces químicos covalentes, como los que conectan los átomos en cada hebra de ADN, pero más fuertes que interacciones hidrófobas individuales,enlaces de Van der Waals, etc.Como los puentes de hidrógeno no sonenlaces covalentes, pueden romperse y formarse de nuevo de forma relativamente sencilla. Por esta razón, las dos hebras de la doble hélice pueden separarse como una cremallera, bien por fuerza mecánica o por altatemperatura.[33]​ La doble hélice se estabiliza además por el efectohidrofóbico y el apilamiento, que no se ven influidos por la secuencia de bases del ADN.[34]

Cada tipo de base en una hebra forma un enlace únicamente con un tipo de base en la otra hebra, lo que se denominacomplementariedad de las bases. Así, las purinas forman enlaces con las pirimidinas, de forma que A se enlaza solo con T, y C solo con G. La organización de dos nucleótidos apareados a lo largo de la doble hélice se denominaapareamiento de bases. Este emparejamiento corresponde a la observación ya realizada porErwin Chargaff (1905‑2002),[35]​ que mostró que la cantidad de adenina era muy similar a la cantidad de timina, y que la cantidad de citosina era igual a la cantidad de guanina en el ADN. Como resultado de esta complementariedad, toda la información contenida en la secuencia de doble hebra de la hélice de ADN está duplicada en cada hebra, lo cual es fundamental durante el proceso de replicación del ADN. En efecto, esta interacción reversible y específica entre pares de bases complementarias es crítica para todas las funciones del ADN en los seres vivos.[22]

Como se ha indicadoanteriormente, los dos tipos de pares de bases forman un número diferente de enlaces de hidrógeno: A=T forman dos puentes de hidrógeno, y C≡G forman tres puentes de hidrógeno (ver imágenes). El par de bases GC es por tanto más fuerte que el par de bases AT. Como consecuencia, tanto el porcentaje de pares de bases GC como la longitud total de la doble hélice de ADN determinan la fuerza de la asociación entre las dos hebras de ADN. Las dobles hélices largas de ADN con alto contenido en GC tienen hebras que interaccionan más fuertemente que las dobles hélices cortas con alto contenido en AT.[36]​ Por esta razón, las zonas de la doble hélice de ADN que necesitan separarse fácilmente tienden a tener un alto contenido en AT, como por ejemplo la secuencia TATAAT de lacaja de Pribnow de algunospromotores.[37]​ En el laboratorio, la fuerza de esta interacción puede medirse buscando la temperatura requerida para romper los puentes de hidrógeno, latemperatura de fusión (también denominado valorTm, del inglésmelting temperature). Cuando todas las pares de bases en una doble hélice se funden, las hebras se separan en solución en dos hebras completamente independientes. Estas moléculas de ADN de hebra simple no tienen una única forma común, sino que algunas conformaciones son más estables que otras.[38]

Otros tipos de pares de bases

Par de bases A=T de tipoWatson-Crick. En azul el «donador» de hidrógenos y en rojo el «aceptor».
Par de bases A=T de tipoWatson-Crick reverso. En azul el «donador» de hidrógenos y en rojo el «aceptor». Nótese que la pirimidina ha sufrido un giro de 180º sobre el eje del carbono 6.

Existen diferentes tipos de pares de bases que se pueden formar según el modo como se forman los puentes de hidrógeno. Los que se observan en la doble hélice de ADN son los llamadospares de bases Watson-Crick, pero también existen otros posibles pares de bases, como los denominadosHoogsteen yWobble u oscilante, que pueden aparecer en circunstancias particulares. Además, para cada tipo existe a su vez el mismo par reverso, es decir, el que se da si se gira la base pirimidínica 180° sobre su eje.

  • Watson-Crick (pares de bases de la doble hélice): los grupos de la base púrica que intervienen en el enlace de hidrógeno son los que corresponden a las posiciones 1 y 6 (N aceptor y -NH2 donador si la purina es una A) y los grupos de la base pirimidínica, los que se encuentran en las posiciones 3 y 4 (-NH donador y C=O aceptor si la pirimidina es una T). En el par de bases Watson-Crick reverso participarían los grupos de las posiciones 2 y 3 de la base pirimidínica (ver imágenes).
  • Hoogsteen: en este caso cambian los grupos de la base púrica, que ofrece una cara diferente (posiciones 6 y 7) y que forman enlaces con los grupos de las pirimidinas de las posiciones 3 y 4 (como en Watson-Crick). También puede haber Hoogsteen reversos. Con este tipo de enlace pueden unirse A=U (Hoogsteen y Hoogsteen reverso) y A=C (Hoogsteen reverso).
  • Wobble u oscilante: este tipo de enlace permite que se unan guanina y timina con un enlace doble (G=T). La base púrica (G) forma enlace con los grupos de las posiciones 1 y 6 (como en Watson-Crick) y la pirimidina (T) con los grupos de las posiciones 2 y 3. Este tipo de enlace no funcionaría con A=C, ya que quedarían enfrentados los 2 «aceptores» y los 2 «donadores», y solo se podría dar en el caso inverso. Encontramos pares de bases de tipo oscilante en el ARN, durante el apareamiento decodón yanticodón. Con este tipo de enlace pueden unirse G=U (oscilante y oscilante reverso) y A=C (oscilante reverso).

En total, en su forma tautomérica mayoritaria, existen 28 posibles pares de bases nitrogenadas: 10 posibles pares de bases purina-pirimidina (2 pares Watson-Crick y 2 Watson Crick reverso, 1 par Hoogsteen y 2 pares Hoogsteen reverso, 1 par oscilante y 2 pares oscilante reverso), 7 pares homo purina-purina (A=A, G=G), 4 pares A=G y 7 pares pirimidina-pirimidina. Esto sin contar con los pares de bases que pueden formarse si también tenemos en cuenta las otras formas tautoméricas minoritarias de las bases nitrogenadas; estos, además, pueden ser responsables demutaciones puntuales por sustitución de tipotransición.

Estructura

El ADN es unamolécula bicatenaria, es decir, está formada por dos cadenas dispuestas de forma antiparalela y con las bases nitrogenadas enfrentadas. En su estructura tridimensional, se distinguen distintos niveles:[39][40]

Estructura primaria
Secuencia denucleótidos encadenados. Es en estas cadenas donde se encuentra la información genética, y dado que el esqueleto es el mismo para todos, la diferencia de la información radica en la distinta secuencia de bases nitrogenadas. Esta secuencia presenta un código, que determina una información u otra, según el orden de las bases.
Estructura secundaria
Es unaestructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fue postulada por Watson y Crick, basándose en la difracción de rayos X que habían realizado Franklin y Wilkins, y en la equivalencia de bases de Chargaff, según la cual la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.
Es una cadena doble, dextrógira olevógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina y la guanina de una cadena se unen, respectivamente, a la timina y la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´ de una se enfrenta al extremo 5' de la homóloga.
Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el que tiene la estructura descrita por Watson y Crick.
Estructura terciaria
Se refiere a cómo se almacena el ADN en un espacio reducido, para formar losnucleosomas.[41]​ Varía según se trate de seresprocariotas oeucariotas:
  1. Enprocariotas el ADN se pliega como una súperhélice, generalmente en forma circular y asociada a una pequeña cantidad de proteínas. Lo mismo ocurre enorgánulos celulares como lasmitocondrias y en loscloroplastos.
  2. Eneucariotas, dado que la cantidad de ADN de cadacromosoma es muy grande, el empaquetamiento ha de ser más complejo y compacto; para ello se necesita la presencia de proteínas, como lashistonas yotras proteínas de naturaleza no histónica (en losespermatozoides estas proteínas son lasprotaminas).[39]
Estructura cuaternaria
Lacromatina presente en el núcleo tiene un grosor de 300 Å, pues la fibra de cromatina de 100 Å se enrolla formando una fibra de cromatina de 300 Å. El enrollamiento de losnucleosomas recibe el nombre de solenoide. Dichos solenoides se enrollan formando la cromatina del núcleo interfásico de lacélula eucariota. Cuando la célula entra en división, el ADN se compacta más, formando así loscromosomas.

Estructuras en hélice doble

De izquierda a derecha, las estructuras de ADN A, B y Z.
Artículos principales: ADN-B, ADN-A y ADN-Z.

El ADN existe en muchas conformaciones.[32]​ Sin embargo, en organismos vivos solo se han observado las conformacionesADN-A,ADN-B yADN-Z. La conformación que adopta el ADN depende de su secuencia, la cantidad y dirección desuperenrollamiento que presenta, la presencia demodificaciones químicas en las bases y las condiciones de la solución, tales como la concentración deiones demetales ypoliaminas.[42]​ De las tres conformaciones, la forma «B» es la más común en las condiciones existentes en las células.[43]​ Las dos dobles hélices alternativas del ADN difieren en su geometría y dimensiones.

La forma «A» es una espiral que gira hacia la derecha, más amplia que la «B», con una hendidura menor superficial y más amplia, y una hendidura mayor más estrecha y profunda. La forma «A» ocurre en condiciones no fisiológicas en formas deshidratadas de ADN, mientras que en la célula puede producirse en apareamientos híbridos de hebras ADN‑ARN, además de en complejos enzima-ADN.[44][45]

Los segmentos de ADN en los que las bases han sido modificadas pormetilación pueden sufrir cambios conformacionales mayores y adoptar la forma «Z». En este caso, las hebras giran alrededor del eje de la hélice en una espiral que gira a mano izquierda, lo opuesto a la forma «B» más frecuente.[46]​ Estas estructuras poco frecuentes pueden ser reconocidas por proteínas específicas que se unen a ADN‑Z y posiblemente estén implicadas en la regulación de latranscripción.[47]

Estructuras en cuádruplex

Estructura de un ADN en cuádruplex formada por repeticiones en lostelómeros. La conformación de la estructura de soporte del ADN difiere significativamente de la típica estructura en hélice.[48]

En los extremos de los cromosomas lineales existen regiones especializadas de ADN denominadastelómeros. La función principal de estas regiones es permitir a la célula replicar los extremos cromosómicos utilizando la enzimatelomerasa, puesto que las enzimas que replican el resto del ADN no pueden copiar los extremos 3' de los cromosomas.[49]​ Estas terminaciones cromosómicas especializadas también protegen los extremos del ADN, y evitan que los sistemas dereparación del ADN en la célula los procesen como ADN dañado que debe ser corregido.[50]​ En las células humanas, los telómeros son largas zonas de ADN de hebra sencilla que contienen algunos miles de repeticiones de una única secuencia TTAGGG.[51]

Estas secuencias ricas en guanina pueden estabilizar los extremos cromosómicos mediante la formación de estructuras de juegos apilados de unidades de cuatro bases, en lugar de los pares de bases encontrados normalmente en otras estructuras de ADN. En este caso, cuatro bases guanina forman unidades con superficie plana que se apilan una sobre otra, para formar una estructura cuádruple-G estable.[52]​ Estas estructuras se estabilizan formandopuentes de hidrógeno entre los extremos de las bases y laquelatación de un metal iónico en el centro de cada unidad de cuatro bases.[53]​ También se pueden formar otras estructuras, con el juego central de cuatro bases procedente, o bien de una hebra sencilla plegada alrededor de las bases, o bien de varias hebras paralelas diferentes, de forma que cada una contribuye con una base a la estructura central.

Además de estas estructuras apiladas, lostelómeros también forman largas estructuras en lazo, denominadas lazos teloméricos o lazos‑T (T‑loops en inglés). En este caso, las hebras simples de ADN se enroscan sobre sí mismas en un amplio círculo estabilizado por proteínas que se unen a telómeros.[54]​ En el extremo del lazo T, el ADN telomérico de hebra sencilla se sujeta a una región de ADN de doble hebra porque la hebra de ADN telomérico altera la doble hélice y se aparea a una de las dos hebras. Esta estructura de triple hebra se denominalazo de desplazamiento olazo D (D‑loop).[52]

Hendiduras mayor y menor

Animación de la estructura de una sección de ADN. Las bases se encuentran horizontalmente entre las dos hebras en espiral. Versión ampliada[55]​
Animación de la estructura de una sección de ADN. Las bases se encuentran horizontalmente entre las dos hebras en espiral.Versión ampliada[55]
Doble hélice: a) Dextrógira, b) Levógira.

Lahélice doble es una espiraldextrógira, esto es, cada una de las cadenas denucleótidos gira a la derecha; esto puede verificarse si nos fijamos, yendo de abajo arriba, en la dirección que siguen los segmentos de las hebras que quedan en primer plano. Si las dos hebras giran a derechas se dice que la doble hélice es dextrógira, y si giran a izquierdas,levógira (esta forma puede aparecer en hélices alternativas debido a cambios conformacionales en el ADN). Pero en la conformación más común que adopta el ADN, la doble hélice es dextrógira, girando cada par de bases respecto al anterior unos 36º.[56]

Cuando las dos hebras de ADN se enrollan una sobre la otra (sea a derechas o a izquierdas), se forman huecos o hendiduras entre una hebra y la otra, dejando expuestos los laterales de lasbases nitrogenadas del interior (ver la animación). En la conformación más común que adopta el ADN aparecen, como consecuencia de los ángulos formados entre losazúcares de ambas cadenas de cada par de bases nitrogenadas, dos tipos de hendiduras alrededor de la superficie de la doble hélice: una de ellas, la hendidura o surco mayor, que mide 22 Å (2.2 nm) de ancho, y la otra, la hendidura o surco menor, que mide 12 Å (1.2 nm) de ancho.[57]​ Cada vuelta de hélice, que es cuando esta ha realizado un giro de 360° o lo que es lo mismo, de principio de hendidura mayor a final de hendidura menor, medirá por tanto 34 Å, y en cada una de esas vueltas hay unos 10.5 pb.

Hendiduras mayor y menor de la doble hélice

La anchura de la hendidura mayor implica que los extremos de las bases son más accesibles en esta, de forma que la cantidad de grupos químicos expuestos también es mayor lo cual facilita la diferenciación entre los pares de bases A‑T, T‑A, C‑G, G‑C. Como consecuencia de ello, también se verá facilitado el reconocimiento de secuencias de ADN por parte de diferentesproteínas sin la necesidad de abrir la doble hélice. Así, proteínas como losfactores de transcripción que pueden unirse a secuencias específicas, frecuentemente contactan con los laterales de las bases expuestos en la hendidura mayor.[58]​ Por el contrario, los grupos químicos que quedan expuestos en la hendidura menor son similares, de forma que el reconocimiento de los pares de bases es más difícil; por ello se dice que la hendidura mayor contiene más información que la hendidura menor.[56]

Sentido y antisentido

Artículo principal: Antisentido

Una secuencia de ADN se denomina «sentido» si su secuencia es la misma que la secuencia de unARN mensajero que se traduce en una proteína. La secuencia de la hebra de ADN complementaria se denomina «antisentido» (antisense). En ambas hebras de ADN de la doble hélice pueden existir tanto secuencias «sentido», que codifican ARNm, como «antisentido», que no lo codifican. Es decir, las secuencias que codifican ARNm no están todas presentes en una sola de las hebras, sino repartidas entre las dos hebras. Tanto enprocariotas como eneucariotas se producen ARN con secuencias antisentido, pero la función de esos ARN no está completamente clara.[59]​ Se ha propuesto que los ARNantisentido están implicados en la regulación de laexpresión génica mediante apareamiento ARN‑ARN: los ARNantisentido se aparearían con los ARNm complementarios, bloqueando de esta forma sutraducción.[60]

En unas pocas secuencias de ADN en procariotas y eucariotas —este hecho es más frecuente enplásmidos yvirus—, la distinción entre hebrassentido yantisentido es más difusa, debido a que presentan genes superpuestos.[61]​ En estos casos, algunas secuencias de ADN tienen una función doble, codificando una proteína cuando se lee a lo largo de una hebra, y una segunda proteína cuando se lee en la dirección contraria a lo largo de la otra hebra. Enbacterias, esta superposición puede estar involucrada en la regulación de latranscripción del gen,[62]​ mientras que en virus los genes superpuestos aumentan la cantidad de información que puede codificarse en sus diminutos genomas.[63]

Superenrollamiento

Estructura de moléculas de ADN lineales con los extremos fijos y superenrolladas. Por claridad, se ha omitido la estructura en hélice del ADN.

El ADN puede retorcerse como una cuerda en un proceso denominado:superenrollamiento de ADN. Cuando el ADN está en un estado «relajado», una hebra normalmente gira alrededor del eje de la doble hélice una vez cada 10.4 pares de bases, pero si el ADN está retorcido las hebras pueden estar unidas más estrechamente o más relajadamente.[64]​ Si el ADN está retorcido en la dirección de la hélice, se dice que el superenrollamiento es positivo, y las bases se mantienen juntas de forma más estrecha. Si el ADN se retuerce en la dirección opuesta, el superenrollamiento se llama negativo, y las bases se alejan. En la naturaleza, la mayor parte del ADN tiene un ligero superenrollamiento negativo que es producido porenzimas denominadastopoisomerasas.[65]​ Estas enzimas también son necesarias para liberar las fuerzas de torsión introducidas en las hebras de ADN durante procesos como latranscripción y lareplicación.[66]

Modificaciones químicas

citosina5‑metil‑citosinatimina
Estructura de la citosina con y sin el grupometilo. Tras la desaminación, la 5‑metil‑citosina tiene la misma estructura que la timina.

Modificaciones de bases del ADN

Véase también:Metilación

La expresión de los genes está influenciada por la forma en la que el ADN está empaquetado en cromosomas, en una estructura denominadacromatina. Las modificaciones de bases pueden estar implicadas en el empaquetamiento del ADN: las regiones que presentan una expresión génica baja o nula normalmente contienen niveles altos demetilación de las basescitosina. Por ejemplo, la metilación de citosina produce 5‑metil‑citosina, que es importante para la inactivación delcromosoma X.[67]​ El nivel medio de metilación varía entre organismos: el gusanoCaenorhabditis elegans carece de metilación de citosina, mientras que losvertebrados presentan un nivel alto —hasta 1 %— de su ADN contiene 5‑metil‑citosina.[68]​ A pesar de la importancia de la 5‑metil‑citosina, esta puede desaminarse para generar una base timina. Las citosinas metiladas son por tanto particularmente sensibles amutaciones.[69]​ Otras modificaciones de bases incluyen la metilación deadenina enbacterias y laglicosilación deuracilo para producir la «base‑J» enkinetoplastos.[70][71]

Daño del ADN

Véase también:Mutación
Molécula debenzopireno, mutágeno presente por ejemplo en el humo deltabaco, ligada a una hélice de ADN.[72]

El ADN puede resultar dañado por muchos tipos demutágenos, que cambian la secuencia del ADN:agentes alquilantes, además deradiación electromagnética de alta energía, como luzultravioleta yrayos X. El tipo de daño producido en el ADN depende del tipo de mutágeno. Por ejemplo, la luz UV puede dañar al ADN produciendo dímeros detimina, que se forman por ligamiento cruzado entre basespirimidínicas.[73]​ Por otro lado, oxidantes tales comoradicales libres o elperóxido de hidrógeno producen múltiples daños, incluyendo modificaciones de bases, sobre todo guanina, y roturas de doble hebra (double‑strand breaks).[74]​ En una célula humana cualquiera, alrededor de 500 bases sufren daño oxidativo cada día.[75][76]​ De estas lesiones oxidativas, las más peligrosas son las roturas de doble hebra, ya que son difíciles de reparar y pueden producirmutaciones puntuales,inserciones ydeleciones de la secuencia de ADN, así comotranslocaciones cromosómicas.[77]

Muchos mutágenos se posicionan entre dos pares de bases adyacentes, por lo que se denominanagentes intercalantes. La mayoría de los agentes intercalantes son moléculasaromáticas y planas, como elbromuro de etidio, ladaunomicina, ladoxorubicina y latalidomida. Para que un agente intercalante pueda integrarse entre dos pares de bases, estas deben separarse, distorsionando las hebras de ADN y abriendo la doble hélice. Esto inhibe latranscripción y lareplicación del ADN, causando toxicidad y mutaciones. Por ello, los agentes intercalantes del ADN son a menudocarcinógenos: elbenzopireno, lasacridinas, laaflatoxina y elbromuro de etidio son ejemplos bien conocidos.[78][79][80]​ Sin embargo, debido a su capacidad para inhibir la replicación y la transcripción del ADN, estas toxinas también se utilizan enquimioterapia para inhibir el rápido crecimiento de las célulascancerosas.[81]

El daño en el ADN inicia una respuesta que activa diferentes mecanismos de reparación que reconocen lesiones específicas en el ADN, que son reparadas en el momento para recuperar la secuencia original del ADN. Asimismo, el daño en el ADN provoca una parada en elciclo celular, que conlleva la alteración de numerosos procesos fisiológicos, que a su vez implica síntesis, transporte y degradación de proteínas (véase tambiénCheckpoint de daños en el ADN). Alternativamente, si el daño genómico es demasiado grande para que pueda ser reparado, los mecanismos de control inducirán la activación de una serie de rutas celulares que culminarán en lamuerte celular.

Funciones biológicas

Las funciones biológicas del ADN incluyen el almacenamiento de información (genes y genoma), la codificación de proteínas (transcripción y traducción) y su autoduplicación (replicación del ADN) para asegurar la transmisión de la información a las células hijas durante la división celular.

Genes y genoma

Véanse también:Núcleo celular, Cromatina, Cromosoma y Genoma.

El ADN se puede considerar como un almacén cuyo contenido es la información (mensaje) necesaria para construir y sostener el organismo en el que reside, la cual se transmite de generación en generación. El conjunto de información que cumple esta función en un organismo dado se denominagenoma, y el ADN que lo constituye, ADN genómico.

El ADN genómico (que se organiza en moléculas decromatina que a su vez se ensamblan encromosomas) se encuentra en elnúcleo celular de loseucariotas, además de pequeñas cantidades en lasmitocondrias ycloroplastos. Enprocariotas, el ADN se encuentra en un cuerpo de forma irregular denominadonucleoide.[82]

ADN codificante

ARN polimerasa T7 (azul) produciendo unARNm (verde) a partir de un molde de ADN (naranja).[83]
Véase también:Gen

La información de ungenoma está contenida en losgenes, y al conjunto de toda la información que corresponde a un organismo se le denomina sugenotipo. Un gen es una unidad deherencia y es una región de ADN que influye en una característica particular de un organismo (como el color de los ojos, por ejemplo). Los genes contienen unmarco de lectura abierto que puede transcribirse, además desecuencias reguladoras, tales comopromotores yenhancers, que controlan la transcripción del marco de lectura abierto.

Desde este punto de vista, las «obreras» de este mecanismo son las proteínas. Estas pueden ser «estructurales», como las proteínas de losmúsculos,cartílagos, pelo, etc., o «funcionales», como lahemoglobina o las innumerablesenzimas del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de «plano» o «receta» para producirlas. La mayor parte de las veces la modificación del ADN provocará una disfunción proteica que dará lugar a la aparición de algunaenfermedad. Pero en determinadas ocasiones, las modificaciones podrán provocar cambios beneficiosos que darán lugar a individuos mejor adaptados a su entorno.

Las aproximadamente treinta mil proteínas diferentes en el cuerpo humano están constituidas por veinteaminoácidos diferentes, y una molécula de ADN debe especificar la secuencia en que se unen dichos aminoácidos.

En el proceso de elaborar una proteína, el ADN de un gen se lee y se transcribe aARN. Este ARN sirve como mensajero entre el ADN y lamaquinaria que elaborará las proteínas y por eso recibe el nombre deARN mensajero o ARNm. El ARN mensajero sirve de molde a la maquinaria que elabora las proteínas, para que ensamble los aminoácidos en el orden preciso paraarmar la proteína.

Eldogma central de la biología molecular establecía que el flujo de actividad y de información era: ADN → ARN → proteína. No obstante, en la actualidad ha quedado demostrado que este «dogma» debe ser ampliado, pues se han encontrado otros flujos de información: en algunos organismos (virus de ARN) la información fluye de ARN a ADN; este proceso se conoce como «transcripción inversa o reversa», también llamada «retrotranscripción». Además, se sabe que existen secuencias de ADN que se transcriben a ARN y son funcionales como tales, sin llegar a traducirse nunca a proteína: son losARN no codificantes, como es el caso de losARN interferentes.[39][40]

ADN no codificante

El ADN del genoma de un ser vivo puede dividirse conceptualmente en dos: el que codifica las proteínas (los genes) y el que no codifica. En muchasespecies, solo una pequeña fracción delgenoma codifica proteínas. Por ejemplo, solo alrededor del 1.5 % del genoma humano consiste enexones que codifican proteínas (20 000 a 25 000 genes), mientras que más del 90 % consiste en ADN no codificante.[84]

ElADN no codificante (también denominadoADN basura) corresponde a secuencias del genoma que no generan una proteína (procedentes de transposiciones, duplicaciones, translocaciones y recombinaciones de virus, etc.), incluyendo losintrones. Hasta hace poco tiempo se pensaba que el ADN no codificante no tenía utilidad alguna, pero estudios recientes indican que eso es inexacto. Entre otras funciones, se postula que el llamado «ADN basura» regula laexpresión diferencial de los genes.[85]​ Por ejemplo, algunas secuencias tienen afinidad hacia proteínas especiales que tienen la capacidad de unirse al ADN (como loshomeodominios, los complejos receptores de hormonas esteroides, etc.), con un papel importante en el control de los mecanismos de trascripción y replicación. Estas secuencias se llaman frecuentemente «secuencias reguladoras», y los investigadores suponen que solo se ha identificado una pequeña fracción de las que realmente existen. La presencia de tanto ADN no codificante en genomas eucarióticos y las diferencias en tamaño del genoma entre especies representan un misterio que es conocido como el «enigma del valor de C».[86]​ Los elementos repetitivos también son elementos funcionales. Si no se considerasen así, se excluiría más del 50 % de los nucleótidos totales, ya que constituyen elementos de repetición.

Recientemente, un grupo de investigadores de laUniversidad de Yale ha descubierto una secuencia de ADN no codificante que sería la responsable de que los seres humanos hayan desarrollado la capacidad de agarrar y/o manipular objetos o herramientas.[87]

Por otro lado, algunas secuencias de ADN desempeñan un papel estructural en los cromosomas: lostelómeros ycentrómeros contienen pocos o ningún gen codificante de proteínas, pero son importantes para estabilizar la estructura de los cromosomas. Algunos genes no codifican proteínas, pero sí se transcriben en ARN:ARN ribosómico,ARN de transferencia yARN de interferencia (ARNi, que son ARN que bloquean la expresión de genes específicos). La estructura de intrones y exones de algunos genes (como los deinmunoglobulinas yprotocadherinas) son importantes por permitir loscortes y empalmes alternativos del pre‑ARN mensajero que hacen posible la síntesis de diferentes proteínas a partir de un mismo gen (sin esta capacidad no existiría el sistema inmune, por ejemplo). Algunas secuencias de ADN no codificante representanpseudogenes que tienen valor evolutivo, ya que permiten la creación de nuevos genes con nuevas funciones.[40]​ Otros ADN no codificantes proceden de la duplicación de pequeñas regiones del ADN; esto tiene mucha utilidad, ya que el rastreo de estas secuencias repetitivas permite estudios defilogenia.

Transcripción y traducción

Artículos principales: Transcripción (genética) y Traducción (genética).

En ungen, la secuencia de nucleótidos a lo largo de una hebra de ADN setranscribe a unARN mensajero (ARNm) y esta secuencia a su vez setraduce a unaproteína que un organismo es capaz de sintetizar o «expresar» en uno o varios momentos de su vida, usando la información de dicha secuencia.

La relación entre la secuencia de nucleótidos y la secuencia deaminoácidos de la proteína viene determinada por elcódigo genético, que se utiliza durante el proceso de traducción osíntesis de proteínas. La unidad codificadora del código genético es un grupo de tres nucleótidos (triplete), representado por las tres letras iniciales de las bases nitrogenadas (por ej., ACT, CAG, TTT). Los tripletes del ADN se transcriben en sus bases complementarias en el ARN mensajero, y en este caso los tripletes se denominancodones (para el ejemplo anterior, UGA, GUC, AAA). En el ribosoma cada codón del ARN mensajero interacciona con una molécula deARN de transferencia (ARNt) que contenga el triplete complementario, denominado anticodón. Cada ARNt porta el aminoácido correspondiente al codón de acuerdo con elcódigo genético, de modo que el ribosoma va uniendo los aminoácidos para formar una nueva proteína de acuerdo con las «instrucciones» de la secuencia del ARNm. Existen 64 codones posibles, por lo cual corresponde más de uno para cada aminoácido (por esta duplicidad de codones se dice que el código genético es un código degenerado: no es unívoco); algunos codones indican la terminación de la síntesis, el fin de la secuencia codificante; estos «codones de terminación» o «codones de parada» son UAA, UGA y UAG.[39]

Replicación del ADN

Esquema representativo de la replicación del ADN.
Artículo principal: Replicación de ADN

La replicación del ADN es el proceso por el cual se obtienen copias o réplicas idénticas de una molécula de ADN. La replicación es fundamental para la transferencia de la información genética de una generación a la siguiente y, por ende, es la base de laherencia. El mecanismo consiste esencialmente en la separación de las dos hebras de la doble hélice, las cuales sirven de molde para la posterior síntesis de cadenas complementarias a cada una de ellas, que llevará por nombre ARNm. El resultado final son dos moléculas idénticas a la original. Este tipo de replicación se denomina «semiconservativa» debido a que cada una de las dos moléculas resultantes de la duplicación presenta una cadena procedente de la molécula «madre» y otra recién sintetizada.

Hipótesis sobre la duplicación del ADN

En un principio, se propusieron tres hipótesis:

  • Semiconservativa: Según el experimento de Meselson-Stahl, cada hebra sirve de molde para que se forme una hebra nueva, mediante la complementariedad de bases, quedando al final dos dobles hélices formadas por una hebra antigua (molde) y una nueva hebra (copia).
  • Conservativa: Tras la duplicación quedarían las dos hebras antiguas juntas y, por otro lado, las dos hebras nuevas formando una doble hélice.
  • Dispersiva: Según esta hipótesis, las hebras resultantes estarían formadas por fragmentos en doble hélice ADN antiguo y ADN recién sintetizado.

Interacciones ADN-proteína

Todas las funciones del ADN dependen de sus interacciones con proteínas. Estas interacciones pueden ser inespecíficas, o bien la proteína puede unirse de forma específica a una única secuencia de ADN. También pueden unirse enzimas, entre las cuales son particularmente importantes las polimerasas, que copian las secuencia de bases del ADN durante la transcripción y la replicación.

Proteínas que unen ADN

Interacciones inespecíficas

Interacción de ADN conhistonas (en blanco, arriba). Los aminoácidos básicos de estas proteínas (abajo a la izquierda, en azul) se unen a los grupos ácidos de los fosfatos del ADN (abajo a la derecha, en rojo).

Las proteínas estructurales que se unen al ADN son ejemplos bien conocidos de interacciones inespecíficas ADN-proteínas. En los cromosomas, el ADN se encuentra formando complejos con proteínas estructurales. Estas proteínas organizan el ADN en una estructura compacta denominadacromatina. Eneucariotas esta estructura implica la unión del ADN a un complejo formado por pequeñas proteínas básicas denominadashistonas, mientras que enprocariotas están involucradas una gran variedad de proteínas.[88][89]​ Las histonas forman un complejo de forma cilíndrica denominadonucleosoma, en torno al cual se enrollan casi dos vueltas de ADN de doble hélice. Estas interacciones inespecíficas quedan determinadas por la existencia de residuos básicos en las histonas, que formanenlaces iónicos con el esqueleto de azúcar-fosfato del ADN y, por tanto, son en gran parte independientes de la secuencia de bases.[90]​ Estos aminoácidos básicos experimentan modificaciones químicas demetilación,fosforilación yacetilación,[91]​ que alteran la fuerza de la interacción entre el ADN y las histonas, haciendo al ADN más o menos accesible a losfactores de transcripción y por tanto modificando la tasa de transcripción.[92]

Otras proteínas que se unen a ADN de manera inespecífica en la cromatina incluyen lasproteínas del grupo de alta movilidad (HMG,High Mobility Group) que se unen a ADN plegado o distorsionado.[93]​ Estas proteínas son importantes durante el plegamiento de los nucleosomas, organizándolos en estructuras más complejas para constituir los cromosomas[94]​ durante el proceso decondensación cromosómica. Se ha propuesto que en este proceso también intervendrían otras proteínas, formando una especie de «andamio» sobre el cual se organiza la cromatina; los componentes principales de esta estructura serían: la enzimatopoisomerasa II α (topoIIalpha) y lacondensina 13S.[95]​ Sin embargo, el papel estructural de latopoIIalpha en la organización de los cromosomas aún es discutido, ya que otros grupos argumentan que esta enzima se intercambia rápidamente tanto en los brazos cromosómicos como en loscinetocoros durante lamitosis.[96]

Interacciones específicas

Un grupo bien definido de proteínas que unen ADN es el conformado por las proteínas que se unen específicamente aADN monocatenario oADN de hebra sencilla (ssDNA). En humanos, la proteína A de replicación es la mejor conocida de su familia y actúa en procesos en los que la doble hélice se separa, como lareplicación del ADN, larecombinación o lareparación del ADN.[97]​ Estas proteínas parecen estabilizar el ADN monocatenario, protegiéndolo para evitar que forme estructuras de tallo-lazo(stem-loop) o que sea degradado pornucleasas.

El factor de transcripción represor delfago lambda unido a su ADN diana mediante un motivo hélice-giro-hélice(helix-turn-helix).[98]

Sin embargo, otras proteínas han evolucionado para unirse específicamente a secuencias particulares de ADN. La especificidad de la interacción de las proteínas con el ADN procede de los múltiples contactos con las bases de ADN, lo que les permite «leer» la secuencia del ADN. La mayoría de esas interacciones con las bases ocurre en lahendidura mayor, donde las bases son más accesibles.[99]

Las proteínas específicas estudiadas con mayor detalle son las encargadas de regular la transcripción, denominadas por ellofactores de transcripción. Cada factor de transcripción se une a una secuencia concreta de ADN y activa o inhibe la transcripción de los genes que presentan estas secuencias próximas a sus promotores. Los factores de transcripción pueden efectuar esto de dos formas:

  • En primer lugar, pueden unirse a la polimerasa de ARN responsable de la transcripción, bien directamente o a través de otras proteínas mediadoras. De esta forma. se estabiliza la unión entre la ARN polimerasa y el promotor, lo que permite el inicio de la transcripción.[100]
  • En segundo lugar, los factores de transcripción pueden unirse aenzimas que modifican las histonas del promotor, lo que altera la accesibilidad del molde de ADN a la ARN polimerasa.[101]

Como los ADN diana pueden encontrarse por todo elgenoma del organismo, los cambios en la actividad de un tipo de factor de transcripción pueden afectar a miles de genes.[102]​ En consecuencia, estas proteínas son frecuentemente las dianas de los procesos detransducción de señales que controlan las respuestas a cambios ambientales o diferenciación y desarrollo celular.

Laenzima de restricciónEcoRV (verde) formando un complejo con su ADN diana.[103]

Enzimas que modifican el ADN

Nucleasas y ligasas

Lasnucleasas sonenzimas que cortan las hebras de ADN mediante lacatálisis de lahidrólisis de losenlaces fosfodiéster. Las nucleasas que hidrolizannucleótidos a partir de los extremos de las hebras de ADN se denominanexonucleasas, mientras que lasendonucleasas cortan en el interior de las hebras. Las nucleasas que se utilizan con mayor frecuencia enbiología molecular son lasenzimas de restricción, endonucleasas que cortan el ADN por determinadas secuencias específicas. Por ejemplo, la enzimaEcoRV, que se muestra a la izquierda, reconoce la secuencia de 6 bases 5′‑GAT|ATC‑3′, y hace un corte en ambas hebras en la línea vertical indicada, generando dos moléculas de ADN con los extremos romos. Otras enzimas de restricción generan, sin embargo, extremos cohesivos, ya que cortan de forma diferente las dos hebras de ADN. En la naturaleza, estas enzimas protegen a lasbacterias contra las infecciones defagos, al digerir el ADN de dicho fago cuando entra a través de la pared bacteriana, actuando como un mecanismo de defensa.[104]​ Enbiotecnología, estas nucleasas específicas de la secuencias de ADN se utilizan eningeniería genética paraclonar fragmentos de ADN y en la técnica dehuella genética.

Las enzimas denominadasADN ligasas pueden reunir hebras de ADN cortadas o rotas.[105]​ Las ligasas son particularmente importantes en lareplicación de la hebra que sufre replicación discontinua en el ADN, ya que unen los fragmentos cortos de ADN generados en lahorquilla de replicación para formar una copia completa del molde de ADN. También se utilizan en lareparación del ADN y en procesos derecombinación genética.[105]

Topoisomerasas y helicasas

Lastopoisomerasas son enzimas que poseen a la vez actividad nucleasa y ligasa. Estas proteínas varían la cantidad deADN superenrollado. Algunas de estas enzimas funcionan cortando la hélice de ADN y permitiendo que una sección rote, de manera que reducen el grado de superenrollamiento. Una vez hecho esto, la enzima vuelve a unir los fragmentos de ADN.[65]​ Otros tipos de enzimas son capaces de cortar una hélice de ADN y luego pasar la segunda hebra de ADN a través de la rotura, antes de reunir las hélices.[106]​ Las topoisomerasas son necesarias para muchos procesos en los que interviene el ADN, como lareplicación del ADN y latranscripción.[66]

Lashelicasas son unas proteínas que pertenecen al grupo de losmotores moleculares. Utilizan energía química almacenada en los nucleósidos trifosfatos, fundamentalmenteATP, para romper puentes de hidrógeno entre bases y separar la hélice doble de ADN en hebras simples.[107]​ Estas enzimas son esenciales para la mayoría de los procesos en los que las enzimas necesitan acceder a las bases del ADN.

Polimerasas

Laspolimerasas sonenzimas que sintetizan cadenas de nucleótidos a partir de nucleósidos trifosfatos. La secuencia de sus productos son copias de cadenas de polinucleótidos existentes, que se denominanmoldes. Estas enzimas funcionan añadiendo nucleótidos al grupohidroxilo en 3' del nucleótido previo en una hebra de ADN. En consecuencia, todas las polimerasas funcionan en dirección 5′ → 3′.[108]​ En lossitios activos de estas enzimas, el nucleósido trifosfato que se incorpora aparea su base con la correspondiente en el molde: esto permite que la polimerasa sintentice de forma precisa la hebra complementaria al molde.

Las polimerasas se clasifican de acuerdo al tipo de molde que utilizan:

  • En lareplicación del ADN, unaADN polimerasa dependiente de ADN realiza una copia de ADN a partir de una secuencia de ADN. La precisión es vital en este proceso, por lo que muchas de estas polimerasas tienen una actividad de verificación de la lectura (proofreading). Mediante esta actividad, la polimerasa reconoce errores ocasionales en la reacción de síntesis, debido a la falta de apareamiento entre el nucleótido erróneo y el molde, lo que genera un desacoplamiento (mismatch). Si se detecta un desacoplamiento, se activa una actividadexonucleasa en dirección 3′ → 5′ y la base incorrecta se elimina.[109]​ En la mayoría de los seres vivos las ADN polimerasas funcionan en un gran complejo denominadoreplisoma, que contiene múltiples unidades accesorias, comohelicasas.[110]
  • LasADN polimerasas dependientes de ARN son una clase especializada de polimerasas que copian la secuencia de una hebra de ARN en ADN. Incluyen latranscriptasa inversa, que es una enzimaviral implicada en la infección de células porretrovirus, y latelomerasa, que es necesaria para la replicación de los telómeros.[111][49]​ La telomerasa es una polimerasa inusual, porque contiene su propio molde de ARN como parte de su estructura.[50]
  • Latranscripción se lleva a cabo por unaARN polimerasa dependiente de ADN que copia la secuencia de una de las hebras de ADN en ARN. Para empezar a transcribir un gen, la ARN polimerasa se une a una secuencia del ADN denominadapromotor, y separa las hebras del ADN. Entonces copia la secuencia del gen en un transcrito deARN mensajero hasta que alcanza una región de ADN denominadaterminador, donde se detiene y se separa del ADN. Como ocurre con las ADN polimerasas dependientes de ADN en humanos, la ARN polimerasa II (la enzima que transcribe la mayoría de los genes del genoma humano) funciona como un gran complejo multiproteico que contiene múltiples subunidades reguladoras y accesorias.[112]

Recombinación genética

Estructura de un intermedio enunión de Holliday en larecombinación genética. Las cuatro hebras de ADN separadas están coloreadas en rojo, azul, verde y amarillo.[113]
Artículo principal: Recombinación genética
La recombinación implica la rotura y reunión de dos cromosomas homólogos (M y F) para producir dos cromosomas nuevos reorganizados (C1 y C2).

Una hélice de ADN normalmente no interacciona con otros segmentos de ADN, y en las células humanas los diferentes cromosomas incluso ocupan áreas separadas en elnúcleo celular denominadas «territorios cromosómicos».[114]​ La separación física de los diferentes cromosomas es importante para que el ADN mantenga su capacidad de funcionar como un almacén estable de información. Uno de los pocos momentos en los que los cromosomas interaccionan es durante elsobrecruzamiento cromosómico (chromosomal crossover), durante el cual serecombinan. El sobrecruzamiento cromosómico ocurre cuando dos hélices de ADN se rompen, se intercambian y se unen de nuevo.

La recombinación permite a los cromosomas intercambiar información genética y produce nuevas combinaciones de genes, lo que aumenta la eficiencia de laselección natural y puede ser importante en la evolución rápida de nuevas proteínas.[115]​ Durante la profase I de lameiosis, una vez que los cromosomas homólogos están perfectamente apareados formando estructuras llamadas bivalentes, se produce el fenómeno de sobrecruzamiento o entrecruzamiento(crossing-over), en el cual las cromátidas homólogas no hermanas (procedentes del padre y de la madre) intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la variación genética entre la descendencia de progenitores que se reproducen por vía sexual. La recombinación genética también puede estar implicada en lareparación del ADN, en particular en la respuesta celular a las roturas de doble hebra(double-strand breaks).[116]

La forma más frecuente de sobrecruzamiento cromosómico es larecombinación homóloga, en la que los dos cromosomas implicados comparten secuencias muy similares. La recombinación no-homóloga puede ser dañina para las células, ya que puede producirtranslocaciones cromosómicas y anomalías genéticas. La reacción de recombinación está catalizada por enzimas conocidas comorecombinasas, tales comoRAD51.[117]​ El primer paso en el proceso de recombinación es una rotura de doble hebra, causada bien por una endonucleasa o por daño en el ADN.[118]​ Posteriormente, una serie de pasos catalizados en parte por la recombinasa, conducen a la unión de las dos hélices formando al menos unaunión de Holliday, en la que un segmento de una hebra simple es anillado con la hebra complementaria en la otra hélice. La unión de Holliday es una estructura de unión tetrahédrica que puede moverse a lo largo del par de cromosomas, intercambiando una hebra por otra. La reacción de recombinación se detiene por el corte de la unión y la reunión de los segmentos de ADN liberados.[119]

Evolución del metabolismo de ADN

Véase también:Hipótesis del mundo de ARN

El ADN contiene la información genética que permite a la mayoría de los seres vivientes funcionar, crecer y reproducirse. Sin embargo, no está claro durante cuánto tiempo ha ejercido esta función en los ~3000 millones de años de lahistoria de la vida, ya que se ha propuesto que las formas de vida más tempranas podrían haber utilizadoARN como material genético.[120][121]​ El ARN podría haber funcionado como la parte central de un metabolismo primigenio, ya que puede transmitir información genética y simultáneamente actuar comocatalizador formando parte de lasribozimas.[122]​ Este antiguoMundo de ARN donde los ácidos nucleicos funcionarían como catalizadores y como almacenes de información genética podría haber influido en laevolución delcódigo genético actual, basado en cuatronucleótidos. Esto se debería a que el número de bases únicas en un organismo es un compromiso entre un número pequeño de bases (lo que aumentaría la precisión de la replicación) y un número grande de bases (que a su vez aumentaría la eficiencia catalítica de las ribozimas).[123]

Desafortunadamente, no se cuenta con evidencia directa de los sistemas genéticos ancestrales porque la recuperación del ADN a partir de la mayor parte de los fósiles es imposible. Esto se debe a que el ADN es capaz de sobrevivir en el medio ambiente durante menos de un millón de años, y luego empieza a degradarse lentamente en fragmentos de menor tamaño en solución.[124]​ Algunas investigaciones pretenden que se ha obtenido ADN más antiguo, por ejemplo un informe sobre el aislamiento de una bacteria viable a partir de un cristal salino de 250 millones de años de antigüedad,[125]​ pero estos datos son controvertidos.[126][127]

Sin embargo, pueden utilizarse herramientas de evolución molecular para inferir los genomas de organismos ancestrales a partir de organismos contemporáneos.[128][129]​ En muchos casos, estas inferencias son suficientemente fiables, de manera que una biomolécula codificada en un genoma ancestral puede resucitarse en el laboratorio para ser estudiada hoy.[130][131]​ Una vez que la biomolécula ancestral se ha resucitado, sus propiedades pueden ofrecer inferencias sobre ambientes y estilos de vida primigenios. Este proceso se relaciona con el campo emergente de lapaleogenética experimental.[132]

A pesar de todo, el proceso de trabajohacia atrás desde el presente tiene limitaciones inherentes, razón por la cual otros investigadores tratan de elucidar el mecanismo evolutivo trabajando desde el origen de la Tierra en adelante. Dada suficiente información sobre la química en el cosmos, la manera en la que las sustancias cósmicas podrían haberse depositado en la Tierra, y las transformaciones que podrían haber tenido lugar en la superficie terrestre primigenia, tal vez podríamos ser capaces de aprender sobre los orígenes para desarrollar modelos de evolución ulterior de la información genética[133]​ (véase también el artículo sobre elorigen de la vida).

Técnicas comunes

El conocimiento de la estructura del ADN ha permitido el desarrollo de multitud de herramientas tecnológicas que explotan sus propiedades fisicoquímicas para analizar su implicación en problemas concretos: por ejemplo, desdeanálisis filogeńeticos para detectar similitudes entre diferentestaxones, a la caracterización de la variabilidad individual de un paciente en su respuesta a un determinadofármaco, pasando por un enfoque global, a nivelgenómico, de cualquier característica específica en un grupo de individuos de interés.[134]

Podemos clasificar las metodologías de análisis del ADN en aquellas que buscan su multiplicación, yain vivo, como lareacción en cadena de la polimerasa (PCR), yain vitro, como laclonación, y aquellas que explotan las propiedades específicas de elementos concretos, o de genomas adecuadamente clonados. Es el caso de la secuenciación de ADN y de la hibridación con sondas específicas (Southern blot ychips de ADN).

Tecnología del ADN recombinante

Artículo principal: ADN recombinante

La tecnología del ADN recombinante, piedra angular de laingeniería genética, permite propagar grandes cantidades de un fragmento de ADN de interés, el cual se dice que ha sido clonado. Para ello, debe introducirse dicho fragmento en otro elemento de ADN, generalmente unplásmido, que posee en su secuencia los elementos necesarios para que la maquinaria celular de un hospedador, normalmenteEscherichia coli, lo replique. De este modo, una veztransformada la cepa bacteriana, el fragmento de ADN clonado se reproduce cada vez que aquella se divide.[135]

Para clonar la secuencia de ADN de interés, se empleanenzimas como herramientas de corte y empalme del fragmento y del vector (el plásmido). Dichas enzimas corresponden a dos grupos: en primer lugar, lasenzimas de restricción, que poseen la capacidad de reconocer y cortar secuencias específicas; en segundo lugar, laADN ligasa, que establece unenlace covalente entre extremos de ADN compatibles[134]​ (ver secciónNucleasas y ligasas).

Secuenciación

Artículo principal: Secuenciación de ADN

La secuenciación del ADN consiste en dilucidar el orden de losnucleótidos de un polímero de ADN de cualquier longitud, si bien suele dirigirse hacia la determinación degenomas completos, debido a que las técnicas actuales permiten realizar esta secuenciación a gran velocidad, lo cual ha sido de gran importancia para proyectos de secuenciación a gran escala como elProyecto Genoma Humano. Otros proyectos relacionados, en ocasiones fruto de la colaboración de científicos a escala mundial, han establecido la secuencia completa del ADN de muchosgenomas deanimales,plantas ymicroorganismos.

El método de secuenciación deSanger ha sido el más empleado durante el siglo XX. Se basa en la síntesis de ADN en presencia dedidesoxinucleósidos, compuestos que, a diferencia de los desoxinucleósidos normales (dNTPs), carecen de un grupo hidroxilo en su extremo 3'. Aunque los didesoxinucleótidos trifosfatados (ddNTPs) pueden incorporarse a la cadena en síntesis, la carencia de un extremo 3'‑OH imposibilita la generación de un nuevo enlace fosfodiéster con el nucleósido siguiente; por tanto, provocan la terminación de la síntesis. Por esta razón, el método de secuenciación también se denomina «de terminación de cadena». La reacción se realiza usualmente preparando un tubo con el ADN molde, la polimerasa, un cebador, dNTPs convencionales y una pequeña cantidad de ddNTPs marcados fluorescentemente en su base nitrogenada. De este modo, el ddTTP puede ir marcado en azul, el ddATP en rojo, etc. Durante la polimerización, se van truncando las cadenas crecientes, al azar, en distintas posiciones. Por tanto, se produce una serie de productos de distinto tamaño, coincidiendo la posición de la terminación debido a la incorporación del ddNTP correspondiente. Una vez terminada la reacción, es posible correr la mezcla en unaelectroforesis capilar (que resuelve todos los fragmentos según su longitud) en la cual se lee la fluorescencia para cada posición del polímero. En nuestro ejemplo, la lectura azul‑rojo‑azul‑azul se traduciría como TATT.[136][137]

Reacción en cadena de la polimerasa (PCR)

Artículo principal: Reacción en cadena de la polimerasa

La reacción en cadena de la polimerasa, habitualmente conocida como PCR por sus siglas en inglés, es una técnica debiología molecular descrita en 1986 porKary Mullis,[138]​ cuyo objetivo es obtener un gran número de copias de un fragmento deADN dado, partiendo de una escasa cantidad de aquel. Para ello, se emplea unaADN polimerasa termoestable que, en presencia de una mezcla de los cuatrodesoxinucleótidos, un tampón de la fuerza iónica adecuada y loscationes precisos para la actividad de la enzima, dos oligonucleótidos (denominados cebadores) complementarios aparte de la secuencia (situados a distancia suficiente y en sentido antiparalelo) y bajo unas condiciones de temperatura adecuadas, moduladas por un aparato denominadotermociclador, generaexponencialmente nuevos fragmentos de ADN semejantes al original y acotados por los dos cebadores.[135]

La PCR puede efectuarse como una técnica de punto final, esto es, como una herramienta de generación del ADN deseado, o como un método continuo, en el que se evalúe dicha polimerización a tiempo real. Esta última variante es común en laPCR cuantitativa.[134]

Southern blot

Artículo principal: Southern blot

El método de «hibridación Southern» oSouthern blot (el nombre original en elidioma inglés) permite la detección de una secuencia de ADN en una muestra compleja o no del ácido nucleico. Para ello, combina una separación mediantemasa ycarga (efectuada mediante unaelectroforesis en gel) con una hibridación con una sonda de ácido nucleico marcada de algún modo (ya sea conradiactividad o con un compuesto químico) que, tras varias reacciones, dé lugar a la aparición de una señal decolor ofluorescencia. Dicha hibridación se realiza tras la transferencia del ADN separado mediante la electroforesis a una membrana de filtro. Una técnica semejante, pero en la cual no se produce la mencionada separación electroforética se denominadot blot.

El método recibe su nombre en honor a su inventor, elbiólogo inglésEdwin Southern.[139]​ Por analogía al método Southern, se han desarrollado técnicas semejantes que permiten la detección de secuencias dadas de ARN (métodoNorthern, que emplea sondas de ARN o ADN marcadas)[140]​ o de proteínas específicas (técnicaWestern, basada en el uso deanticuerpos).[141]

Chips de ADN

Artículo principal: Chip de ADN
Microarray con 37 500 oligonucleótidos específicos. Arriba a la izquierda se puede apreciar una región ampliada delchip.

Loschips de ADN son colecciones deoligonucleótidos de ADN complementario dispuestos en hileras fijadas sobre un soporte, frecuentemente de cristal. Se utilizan para el estudio de mutaciones de genes conocidos o para monitorizar la expresión génica de una preparación de ARN.

Aplicaciones

Ingeniería genética

Véanse también:Ingeniería genética y Biología molecular.

La investigación sobre el ADN tiene un impacto significativo, especialmente en el ámbito de lamedicina, pero también en agricultura y ganadería (donde los objetivos son los mismos que con las técnicas tradicionales que el hombre lleva utilizando desde hace milenios —la domesticación, la selección y los cruces dirigidos— para obtener variedades de animales y plantas más productivos). La moderna biología y bioquímica hacen uso intensivo de latecnología delADN recombinante, introduciendo genes de interés en seres vivos, con el objetivo de expresar una proteína recombinante concreta, que puede ser:

  • aislada para su uso posterior: por ejemplo, se pueden transformarmicroorganismos para convertirlos en auténticas fábricas que producen grandes cantidades de sustancias útiles, comoinsulina ovacunas, que posteriormente se aíslan y se utilizan terapéuticamente.[142][143][144]
  • necesaria para reemplazar la expresión de un gen endógeno dañado que ha dado lugar a una patología, lo que permitiría el restablecimiento de la actividad de la proteína perdida y finalmente la recuperación del estado fisiológico normal, no patológico. Este es el objetivo de laterapia génica, uno de los campos en los que se está trabajando activamente en medicina, analizando ventajas e inconvenientes de diferentes sistemas de administración del gen (virales y no virales) y los mecanismos de selección del punto de integración de los elementos genéticos (distintos para los virus y los transposones) en el genoma diana.[145]​ En este caso, antes de plantearse la posibilidad de realizar una terapia génica en una determinada patología, es fundamental comprender el impacto del gen de interés en el desarrollo de dicha patología, para lo cual es necesario el desarrollo de un modelo animal, eliminando o modificando dicho gen en un animal de laboratorio, mediante la técnicaknockout.[146]​ Solo en el caso de que los resultados en el modelo animal sean satisfactorios se procedería a analizar la posibilidad de restablecer el gen dañado mediante terapia génica.
  • utilizada para enriquecer un alimento: por ejemplo, la composición de la leche (una importante fuente de proteínas para el consumo humano y animal) puede modificarse mediante transgénesis, añadiendo genes exógenos y desactivando genes endógenos para mejorar su valor nutricional, reducir infecciones en las glándulas mamarias, proporcionar a los consumidores proteínas antipatógenas y preparar proteínas recombinantes para su uso farmacéutico.[147][148]
  • útil para mejorar la resistencia del organismo transformado: por ejemplo en plantas se pueden introducir genes que confieren resistencia a patógenos (virus, insectos, hongos…), así como a agentes estresantes abióticos (salinidad, sequedad, metales pesados…).[149][150][151]

Medicina forense

Véase también:Huella genética

Losmédicos forenses pueden utilizar el ADN presente en lasangre, elsemen, lapiel, lasaliva o elpelo en la escena de un crimen, para identificar al responsable. Esta técnica se denominahuella genética, o también «perfil de ADN». Al realizar la huella genética, se compara la longitud de secciones altamente variables de ADN repetitivo, como losmicrosatélites, entre personas diferentes. Este método es frecuentemente muy fiable para identificar a un criminal.[152]​ Sin embargo, la identificación puede complicarse si la escena está contaminada con ADN de personas diferentes.[153]​ La técnica de la huella genética fue desarrollada en 1984 por el genetista británicosirAlec Jeffreys,[154]​ y fue utilizada por primera vez en medicina forense para condenar aColin Pitchfork por los asesinatos deNarborough en 1983 y deEnderby en 1986.[155]​ Se puede requerir a las personas acusadas de ciertos tipos de crímenes que proporcionen una muestra de ADN para introducirlos en una base de datos. Esto ha facilitado la labor de los investigadores en la resolución de casos antiguos, donde solo se obtuvo una muestra de ADN de la escena del crimen, en algunos casos permitiendo exonerar a un convicto. La huella genética también puede utilizarse para identificar víctimas de accidentes en masa,[156]​ o para realizar pruebas de consanguinidad (prueba de paternidad).[157]

Bioinformática

Véase también:Bioinformática

Labioinformática implica la manipulación, búsqueda yextracción de información de los datos de la secuencia del ADN. El desarrollo de las técnicas para almacenar y buscar secuencias de ADN ha generado avances en el desarrollo desoftware de los ordenadores, para muchas aplicaciones, especialmentealgoritmos de búsqueda de frases,aprendizaje automático y teorías debases de datos.[158]​ La búsqueda de frases o algoritmos de coincidencias, que buscan la ocurrencia de una secuencia de letras dentro de una secuencia de letras mayor, se desarrolló para buscar secuencias específicas de nucleótidos.[159]​ En otras aplicaciones comoeditores de textos, incluso algoritmos simples pueden funcionar, pero las secuencias de ADN pueden generar que estos algoritmos presenten un comportamiento de casi-el-peor-caso, debido al bajo número de caracteres. El problema relacionado delalineamiento de secuencias persigue identificar secuenciashomólogas y localizarmutaciones específicas que las diferencian. Estas técnicas, fundamentalmente elalineamiento múltiple de secuencias, se utilizan al estudiar las relacionesfilogenéticas y la función de las proteínas.[160]​ Las colecciones de datos que representan secuencias de ADN del tamaño de un genoma, tales como las producidas por elProyecto Genoma Humano, son difíciles de usar sin anotaciones, que marcan la localización de los genes y los elementos reguladores en cada cromosoma. Las regiones de ADN que tienen patrones asociados con genes que codifican proteínas —o ARN— pueden identificarse por algoritmos delocalización de genes, lo que permite a los investigadores predecir la presencia deproductos génicos específicos en un organismo incluso antes de que haya sido aislado experimentalmente.[161]

Nanotecnología de ADN

La estructura de ADN de la izquierda (mostrada de forma esquemática) se autoensambla en la estructura visualizada pormicroscopía de fuerza atómica a la derecha. Lananotecnología de ADN es el campo que busca diseñar estructuras a nanoescala utilizando las propiedades de reconocimiento molecular de las moléculas de ADN. Imagen de Strong, 2004.[5]
Véase también:Nanotecnología

La nanotecnología de ADN utiliza las propiedades únicas de reconocimiento molecular del ADN y otros ácidos nucleicos para crear complejos ramificados autoensamblados con propiedades útiles. En este caso, el ADN se utiliza como un material estructural, más que como un portador de información biológica.[162]​ Esto ha conducido a la creación de láminas periódicas de dos dimensiones (ambas basadas en azulejos, así como usando el método deADN origami[163]​), además de estructuras en tres dimensiones con forma depoliedros.

Historia, antropología y paleontología

Véanse también:Filogenia y Genealogía molecular.

A lo largo del tiempo, el ADN almacena mutaciones que se heredan y, por tanto, contiene información histórica, de manera que comparando secuencias de ADN, los genetistas pueden inferir la historia evolutiva de los organismos, sufilogenia.[164]​ La investigación filogenética es una herramienta fundamental enbiología evolutiva. Si se comparan las secuencias de ADN dentro de una especie, losgenetistas de poblaciones pueden conocer la historia de poblaciones particulares. Esto se puede utilizar en una amplia variedad de estudios, desdeecología hastaantropología, como ilustra el análisis de ADN llevado a cabo para identificar las Diez Tribus Perdidas de Israel.[165][166]​ Por otro lado, el ADN también se utiliza para estudiar relaciones familiares recientes.

Igualmente enpaleontología (en lapaleogenética) el ADN en algunos casos también se puede utilizar para estudiar a especies extintas (ADN fósil).

Almacenamiento de información

Véase también:Almacenamiento de datos digitales en ADN

La utilización del ADN como dispositivo de almacenamiento tiene un gran potencial dada su estabilidad, su bajo mantenimiento y su elevada densidad de almacenamiento, aunque también presenta algunas limitaciones como la vulnerabilidad de mutaciones y los altos tiempos de lectura y escritura.[167]

Véase también

Referencias

  1. Malavé, Dr Antonio Alcalá (4 de noviembre de 2015).Genética de la emoción: El origen de la enfermedad. Penguin Random House Grupo Editorial España.ISBN 9788490692066. Consultado el 1 de octubre de 2019. 
  2. «Diccionario de genética - ADN».Instituto Nacional del Cáncer (Estados Unidos). 20 de julio de 2012. Consultado el 21 de octubre de 2023. 
  3. Mazzotta, Guillermo Cejas (2000).Identificación por ADN. Ediciones Jurídicas Cuyo.ISBN 9789875270145. Consultado el 1 de octubre de 2019. 
  4. Ferrer, Sergio.«El verdadero sentido de la vida.»Journal of Feelsynapsis (JoF).ISSN2254-3651. 2011 (1): 119-127.
  5. «ácido desoxirribonucleico».Real Academia Nacional de Medicina de España. 
  6. Dahm, R. (2005). «Friedrich Miescher and the discovery of DNA».Dev Biol278 (2): 274-88.ISSN 0012-1606.PMID 15680349.doi:10.1016/j.ydbio.2004.11.028. 
  7. https://www.terradaily.com/reports/Building_Life_On_Earth_999.html Dato del descubrimiento del ADN en terradaily.com
  8. Dahm, R. (2008). «Discovering DNA: Friedrich Miescher and the early years of nucleic acid research».Hum Genet122 (2): 565-581.PMID 17901982. 
  9. Levene, P. (1919).«The structure of yeast nucleic acid».J Biol Chem40 (2): 415-24. Archivado desdeel original el 29 de junio de 2009. Consultado el 31 de julio de 2008. 
  10. abDhanda, J. S.; Shyam, S. Chauhan (22-Feb-2008).«Structural Levels of Nucleic Acids and Sequencing.». En All India Institute of Medical Sciences, ed.Molecular Biology. (Department of Biochemistry edición). New Delhi – 110 029. Archivado desdeel original el 3 de marzo de 2014. Consultado el 7 de octubre de 2008. La referencia utiliza el parámetro obsoleto|coautores= (ayuda) (Revisado el 7 de octubre de 2008).
  11. Astbury, W. (1947). «Nucleic acid».Symp. SOC. Exp. Bbl1 (66). 
  12. Lorenz, M. G., Wackernagel, W. (1994).«Bacterial gene transfer by natural genetic transformation in the environment».Microbiol. Rev.58 (3): 563-602.PMID 7968924. 
  13. Avery, O., MacLeod, C., McCarty, M. (1944).«Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III».J Exp Med79 (2): 137-158. 
  14. Hershey, A., Chase, M. (1952).«Independent functions of viral protein and nucleic acid in growth of bacteriophage».J Gen Physiol36 (1): 39-56.PMID 12981234. 
  15. Watson, J. D. y Crick, F. H. C. (1953).«A Structure for Deoxyribose Nucleic Acid».Nature171: 737-738.PMID 13054692.doi:10.1038/171737a0. Consultado el 13 de febrero de 2007. 
  16. Nature ArchivesDouble Helix of DNA: 50 Years
  17. Franklin, R. E. (1953).«Molecular Configuration in Sodium Thymonucleate. Franklin, R. y Gosling R. G.».Nature171: 740-741.PMID 13054694.doi:10.1038/171740a0. 
  18. «Original X-ray diffraction image». Archivado desdeel original el 30 de enero de 2009. Consultado el 31 de julio de 2008. 
  19. Wilkins, M. H. F., A. R. Stokes & H. R. Wilson (1953).«Molecular Structure of Deoxypentose Nucleic Acids».Nature171: 738-740.PMID 13054693.doi:10.1038/171738a0. 
  20. The Nobel Prize in Physiology or Medicine 1962 Nobelprize.org (Revisado el 22 de diciembre de 2006..
  21. Maddox, Brenda (23 de enero de 2003).«The double helix and the 'wronged heroine'».Nature421: 407-408.PMID 12540909.doi:10.1038/nature01399. Archivado desdeel original el 17 de octubre de 2016. Consultado el 31 de julio de 2008. 
  22. abAlberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts y Peter Walters (2002).Molecular Biology of the Cell; Fourth Edition. Nueva York y Londres: Garland Science.ISBN 0-8153-3218-1. La referencia utiliza el parámetro obsoleto|coautores= (ayuda)
  23. Butler, John M. (2001)Forensic DNA Typing, Elsevier. pp. 14-15.ISBN 978-0-12-147951-0.
  24. Mandelkern, M., Elias, J., Eden, D., Crothers, D. (1981). «The dimensions of DNA in solution».J Mol Biol152 (1): 153-61.PMID 7338906. 
  25. Gregory, S.,et al. (2006). «The DNA sequence and biological annotation of human chromosome 1».Nature441 (7091): 315-21.PMID 16710414. 
  26. «Due credit».Nature496 (7445): 270. 18 de abril de 2013.PMID 23607133.doi:10.1038/496270a. 
  27. Witkowski J (2019). «The forgotten scientists who paved the way to the double helix».Nature568 (7752): 308-309.Bibcode:2019Natur.568..308W.doi:10.1038/d41586-019-01176-9. 
  28. Watson, J., Crick, F. (1953).«Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid».Nature171 (4356): 737-8.PMID 13054692. 
  29. Andrew Bates (2005).«DNA structure».DNA topology.Oxford University Press.ISBN 0-19-850655-4. 
  30. abcBerg, J., Tymoczko, J. y Stryer, L. (2002)Biochemistry. W. H. Freeman and CompanyISBN 0-7167-4955-6.
  31. «IUPAC-IUB Commission on Biochemical Nomenclature (CBN) - Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents».iupac.qmul.ac.uk. Consultado el 22 de agosto de 2024. 
  32. abGhosh, Anirban; Bansal, Manju (Abril de 2003).«A glossary of DNA structures from A to Z».Acta Crystallographica. Section D, Biological Crystallography59 (Pt 4): 620-626.ISSN 0907-4449.PMID 12657780.doi:10.1107/s0907444903003251. Consultado el 22 de agosto de 2024. 
  33. Clausen-Schaumann, H., Rief, M., Tolksdorf, C., Gaub, H. (2000).«Mechanical stability of single DNA molecules».Biophys J78 (4): 1997-2007.PMID 10733978. Archivado desdeel original el 24 de septiembre de 2019. Consultado el 24 de marzo de 2008. 
  34. Ponnuswamy, P. K.; Gromiha, M. M. (21 de agosto de 1994).«On the conformational stability of oligonucleotide duplexes and tRNA molecules».Journal of Theoretical Biology169 (4): 419-432.ISSN 0022-5193.PMID 7526075.doi:10.1006/jtbi.1994.1163. Consultado el 22 de agosto de 2024. 
  35. Erwin Chargaff Papers
  36. Chalikian, T., Völker, J., Plum, G., Breslauer, K. (1999).«A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques».Proc Natl Acad Sci U S A96 (14): 7853-8.PMID 10393911. Archivado desdeel original el 24 de septiembre de 2019. Consultado el 24 de marzo de 2008. 
  37. deHaseth, P. L.; Helmann, J. D. (junio de 1995).«Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA».Molecular Microbiology16 (5): 817-824.ISSN 0950-382X.PMID 7476180.doi:10.1111/j.1365-2958.1995.tb02309.x. Consultado el 22 de agosto de 2024. 
  38. Isaksson, J.; Acharya, S.; Barman, J.; Cheruku, P.; Chattopadhyaya, J. (28 de diciembre de 2004).«Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern».Biochemistry43 (51): 15996-16010.ISSN 0006-2960.PMID 15609994.doi:10.1021/bi048221v. Consultado el 22 de agosto de 2024. 
  39. abcdHib, J. & De Robertis, E. D. P. 1998.Fundamentos de biología celular y molecular. El Ateneo, 3.ª edición, 416 páginas.ISBN 950-02-0372-3.ISBN 978-950-02-0372-2
  40. abcDe Robertis, E. D. P. 1998.Biología celular y molecular. El Ateneo, 617 páginas.ISBN 950-02-0364-2.ISBN 978-950-02-0364-7
  41. McGraw-Hill (16 de junio de 2006).Quinica Organica, 6th Ed, Carey, 2006: Organic Chemistry. Bukupedia. Consultado el 29 de octubre de 2019. 
  42. Basu, H. S.; Feuerstein, B. G.; Zarling, D. A.; Shafer, R. H.; Marton, L. J. (octubre de 1988).«Recognition of Z-RNA and Z-DNA determinants by polyamines in solution: experimental and theoretical studies».Journal of Biomolecular Structure & Dynamics6 (2): 299-309.ISSN 0739-1102.PMID 2482766.doi:10.1080/07391102.1988.10507714. Consultado el 22 de agosto de 2024. 
  43. Leslie, A. G.; Arnott, S.; Chandrasekaran, R.; Ratliff, R. L. (15 de octubre de 1980).«Polymorphism of DNA double helices».Journal of Molecular Biology143 (1): 49-72.ISSN 0022-2836.PMID 7441761.doi:10.1016/0022-2836(80)90124-2. Consultado el 22 de agosto de 2024. 
  44. Wahl, M. C.; Sundaralingam, M. (1997).«Crystal structures of A-DNA duplexes».Biopolymers44 (1): 45-63.ISSN 0006-3525.PMID 9097733.doi:10.1002/(SICI)1097-0282(1997)44:1<45::AID-BIP4>3.0.CO;2-#. Consultado el 22 de agosto de 2024. 
  45. Lu, X. J.; Shakked, Z.; Olson, W. K. (21 de julio de 2000).«A-form conformational motifs in ligand-bound DNA structures».Journal of Molecular Biology300 (4): 819-840.ISSN 0022-2836.PMID 10891271.doi:10.1006/jmbi.2000.3690. Consultado el 22 de agosto de 2024. 
  46. Rothenburg, S.; Koch-Nolte, F.; Haag, F. (diciembre de 2001).«DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles».Immunological Reviews184: 286-298.ISSN 0105-2896.PMID 12086319.doi:10.1034/j.1600-065x.2001.1840125.x. Consultado el 22 de agosto de 2024. 
  47. Oh, Doo-Byoung; Kim, Yang-Gyun; Rich, Alexander (24 de diciembre de 2002).«Z-DNA-binding proteins can act as potent effectors of gene expression in vivo».Proceedings of the National Academy of Sciences of the United States of America99 (26): 16666-16671.ISSN 0027-8424.PMID 12486233.doi:10.1073/pnas.262672699. Consultado el 22 de agosto de 2024. 
  48. NDB UD0017
  49. abGreider, C. W.; Blackburn, E. H. (diciembre de 1985).«Identification of a specific telomere terminal transferase activity in Tetrahymena extracts».Cell43 (2 Pt 1): 405-413.ISSN 0092-8674.PMID 3907856.doi:10.1016/0092-8674(85)90170-9. Consultado el 22 de agosto de 2024. 
  50. abNugent, C. I.; Lundblad, V. (15 de abril de 1998).«The telomerase reverse transcriptase: components and regulation».Genes & Development12 (8): 1073-1085.ISSN 0890-9369.PMID 9553037.doi:10.1101/gad.12.8.1073. Consultado el 22 de agosto de 2024. 
  51. Wright, W. E.; Tesmer, V. M.; Huffman, K. E.; Levene, S. D.; Shay, J. W. (1 de noviembre de 1997).«Normal human chromosomes have long G-rich telomeric overhangs at one end».Genes & Development11 (21): 2801-2809.ISSN 0890-9369.PMID 9353250.doi:10.1101/gad.11.21.2801. Consultado el 22 de agosto de 2024. 
  52. abBurge, Sarah; Parkinson, Gary N.; Hazel, Pascale; Todd, Alan K.; Neidle, Stephen (2006).«Quadruplex DNA: sequence, topology and structure».Nucleic Acids Research34 (19): 5402-5415.ISSN 1362-4962.PMC 1636468.PMID 17012276.doi:10.1093/nar/gkl655. Consultado el 22 de agosto de 2024. 
  53. Parkinson, Gary N.; Lee, Michael P. H.; Neidle, Stephen (20 de junio de 2002).«Crystal structure of parallel quadruplexes from human telomeric DNA».Nature417 (6891): 876-880.ISSN 0028-0836.PMID 12050675.doi:10.1038/nature755. Consultado el 22 de agosto de 2024. 
  54. Griffith, J. D.; Comeau, L.; Rosenfield, S.; Stansel, R. M.; Bianchi, A.; Moss, H.; de Lange, T. (14 de mayo de 1999).«Mammalian telomeres end in a large duplex loop».Cell97 (4): 503-514.ISSN 0092-8674.PMID 10338214.doi:10.1016/s0092-8674(00)80760-6. Consultado el 22 de agosto de 2024. 
  55. Created fromPDB 1D65Archivado el 28 de septiembre de 2008 enWayback Machine.
  56. abWatson, J. D.; Baker, T. A.; Bell, S. P.; Gann, A.; Levine, M. y Losick, R (2006). «6. Las estructuras del DNA y el RNA».Biología Molecular del Gen (5ª Ed.) (Madrid: Médica Panamericana).ISBN 84-7903-505-6. La referencia utiliza el parámetro obsoleto|coautores= (ayuda)
  57. Wing, R.; Drew, H.; Takano, T.; Broka, C.; Tanaka, S.; Itakura, K.; Dickerson, R. E. (23 de octubre de 1980).«Crystal structure analysis of a complete turn of B-DNA».Nature287 (5784): 755-758.ISSN 0028-0836.PMID 7432492.doi:10.1038/287755a0. Consultado el 22 de agosto de 2024. 
  58. Pabo, C. O.; Sauer, R. T. (1984).«Protein-DNA recognition».Annual Review of Biochemistry53: 293-321.ISSN 0066-4154.PMID 6236744.doi:10.1146/annurev.bi.53.070184.001453. Consultado el 22 de agosto de 2024. 
  59. Hüttenhofer, Alexander; Schattner, Peter; Polacek, Norbert (mayo de 2005).«Non-coding RNAs: hope or hype?».Trends in genetics: TIG21 (5): 289-297.ISSN 0168-9525.PMID 15851066.doi:10.1016/j.tig.2005.03.007. Consultado el 23 de agosto de 2024. 
  60. Munroe, Stephen H. (1 de noviembre de 2004).«Diversity of antisense regulation in eukaryotes: multiple mechanisms, emerging patterns».Journal of Cellular Biochemistry93 (4): 664-671.ISSN 0730-2312.PMID 15389973.doi:10.1002/jcb.20252. Consultado el 23 de agosto de 2024. 
  61. Makalowska, Izabela; Lin, Chiao-Feng; Makalowski, Wojciech (febrero de 2005).«Overlapping genes in vertebrate genomes».Computational Biology and Chemistry29 (1): 1-12.ISSN 1476-9271.PMID 15680581.doi:10.1016/j.compbiolchem.2004.12.006. Consultado el 23 de agosto de 2024. 
  62. Johnson, Zackary I.; Chisholm, Sallie W. (noviembre de 2004).«Properties of overlapping genes are conserved across microbial genomes».Genome Research14 (11): 2268-2272.ISSN 1088-9051.PMID 15520290.doi:10.1101/gr.2433104. Consultado el 23 de agosto de 2024. 
  63. Lamb, R. A.; Horvath, C. M. (agosto de 1991).«Diversity of coding strategies in influenza viruses».Trends in genetics: TIG7 (8): 261-266.ISSN 0168-9525.PMC 7173306.PMID 1771674.doi:10.1016/0168-9525(91)90326-L. Consultado el 23 de agosto de 2024. 
  64. Benham, Craig J.; Mielke, Steven P. (2005).«DNA mechanics».Annual Review of Biomedical Engineering7: 21-53.ISSN 1523-9829.PMID 16004565.doi:10.1146/annurev.bioeng.6.062403.132016. Consultado el 23 de agosto de 2024. 
  65. abChampoux, J. J. (2001).«DNA topoisomerases: structure, function, and mechanism».Annual Review of Biochemistry70: 369-413.ISSN 0066-4154.PMID 11395412.doi:10.1146/annurev.biochem.70.1.369. Consultado el 23 de agosto de 2024. 
  66. abWang, James C. (junio de 2002).«Cellular roles of DNA topoisomerases: a molecular perspective».Nature Reviews. Molecular Cell Biology3 (6): 430-440.ISSN 1471-0072.PMID 12042765.doi:10.1038/nrm831. Consultado el 23 de agosto de 2024. 
  67. Klose, R., Bird, A. (2006). «Genomic DNA methylation: the mark and its mediators».Trends Biochem Sci31 (2): 89-97.PMID 16403636.doi:10.1016/j.tibs.2005.12.008. 
  68. Bird, A. (2002).«DNA methylation patterns and epigenetic memory».Genes Dev16 (1): 6-21.PMID 11782440.doi:10.1101/gad.947102. 
  69. Walsh, C., Xu, G. (2006). «Cytosine methylation and DNA repair».Curr Top Microbiol Immunol301: 283-315.PMID 16570853.doi:10.1007/3-540-31390-7_11. 
  70. Ratel, David; Ravanat, Jean-Luc; Berger, François; Wion, Didier (Marzo de 2006).«N6-methyladenine: the other methylated base of DNA».BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology28 (3): 309-315.ISSN 0265-9247.PMC 2754416.PMID 16479578.doi:10.1002/bies.20342. Consultado el 23 de agosto de 2024. 
  71. Gommers-Ampt, J. H.; Van Leeuwen, F.; de Beer, A. L.; Vliegenthart, J. F.; Dizdaroglu, M.; Kowalak, J. A.; Crain, P. F.; Borst, P. (17 de diciembre de 1993).«beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei».Cell75 (6): 1129-1136.ISSN 0092-8674.PMID 8261512.doi:10.1016/0092-8674(93)90322-h. Consultado el 23 de agosto de 2024. 
  72. Creado a partir de:PDB 1JDG
  73. Douki, T., Reynaud-Angelin, A., Cadet, J., Sage, E. (2003). «Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation».Biochemistry42 (30): 9221-6.PMID 12885257.doi:10.1021/bi034593c. ,
  74. Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J., Ravanat, J., Sauvaigo, S. (1999). «Hydroxyl radicals and DNA base damage».Mutat Res424 (1-2): 9-21.PMID 10064846. 
  75. Shigenaga, M., Gimeno, C., Ames, B. (1989).«Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker ofin vivo oxidative DNA damage».Proc Natl Acad Sci U S A86 (24): 9697-701.PMID 2602371.doi:10.1073/pnas.86.24.9697. 
  76. Cathcart, R., Schwiers, E., Saul, R., Ames, B. (1984).«Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage».Proc Natl Acad Sci U S A81 (18): 5633-7.PMID 6592579.doi:10.1073/pnas.81.18.5633. 
  77. Valerie, K., Povirk, L. (2003). «Regulation and mechanisms of mammalian double-strand break repair».Oncogene22 (37): 5792-812.PMID 12947387.doi:10.1038/sj.onc.1206679. 
  78. Ferguson, L. R.; Denny, W. A. (septiembre de 1991).«The genetic toxicology of acridines».Mutation Research258 (2): 123-160.ISSN 0027-5107.PMID 1881402.doi:10.1016/0165-1110(91)90006-h. Consultado el 23 de agosto de 2024. 
  79. Jeffrey, A. (1985).«DNA modification by chemical carcinogens».Pharmacol Ther28 (2): 237-72.PMID 3936066.doi:10.1016/0163-7258(85)90013-0. 
  80. Stephens, T., Bunde, C., Fillmore, B. (2000).«Mechanism of action in thalidomide teratogenesis».Biochem Pharmacol59 (12): 1489-99.PMID 10799645.doi:10.1016/S0006-2952(99)00388-3. 
  81. Braña, M., Cacho, M., Gradillas, A., de Pascual-Teresa, B., Ramos, A. (2001). «Intercalators as anticancer drugs».Curr Pharm Des7 (17): 1745-80.PMID 11562309.doi:10.2174/1381612013397113. 
  82. Thanbichler, M., Wang, S., Shapiro, L. (2005). «The bacterial nucleoid: a highly organized and dynamic structure».J Cell Biochem96 (3): 506-21.PMID 15988757.doi:10.1002/jcb.20519. 
  83. Bank, RCSB Protein Data.«RCSB PDB - 1MSW: Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase».www.rcsb.org(en inglés estadounidense). Consultado el 23 de agosto de 2024. 
  84. Wolfsberg, T., McEntyre, J., Schuler, G. (2001).«Guide to the draft human genome».Nature409 (6822): 824-6.PMID 11236998.doi:10.1038/35057000. 
  85. ENCODE Project Consortium; Birney, Ewan; Stamatoyannopoulos, John A.; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R.; Margulies, Elliott H.; Weng, Zhipinget al. (14 de junio de 2007).«Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project».Nature447 (7146): 799-816.ISSN 1476-4687.PMC 2212820.PMID 17571346.doi:10.1038/nature05874. Consultado el 23 de agosto de 2024. Se sugiere usar|número-autores= (ayuda)
  86. Gregory T (2005).«The C-value enigma in plants and animals: a review of parallels and an appeal for partnership».Ann Bot (Lond)95 (1): 133-46.PMID 15596463.doi:10.1093/aob/mci009. 
  87. Yale University.Yale Researchers Find “Junk DNA” May Have Triggered Key Evolutionary Changes in Human Thumb and Foot. Archivado desdeel original el 12 de septiembre de 2008. Consultado el 15 de septiembre de 2008. 
  88. Sandman, K., Pereira, S., Reeve, J. (1998).«Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome».Cell Mol Life Sci54 (12): 1350-64.PMID 9893710.doi:10.1007/s000180050259. 
  89. Dame, R. T. (2005). «The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin».Mol. Microbiol.56 (4): 858-70.PMID 15853876.doi:10.1111/j.1365-2958.2005.04598.x. 
  90. Luger, K., Mäder, A., Richmond, R., Sargent, D., Richmond, T. (1997).«Crystal structure of the nucleosome core particle at 2.8 A resolution».Nature389 (6648): 251-60.PMID 9305837.doi:10.1038/38444. 
  91. Jenuwein, T., Allis, C. (2001). «Translating the histone code».Science293 (5532): 1074-80.PMID 11498575.doi:10.1126/science.1063127. 
  92. Ito, T. (2003).«Nucleosome assembly and remodeling».Current Topics in Microbiology and Immunology274: 1-22.ISSN 0070-217X.PMID 12596902.doi:10.1007/978-3-642-55747-7_1. Consultado el 30 de septiembre de 2023. 
  93. Thomas J (2001). «HMG1 and 2: architectural DNA-binding proteins».Biochem Soc Trans29 (Pt 4): 395-401.PMID 11497996.doi:10.1042/BST0290395. 
  94. Grosschedl, R., Giese, K., Pagel, J. (1994).«HMG domain proteins: architectural elements in the assembly of nucleoprotein structures».Trends Genet10 (3): 94-100.PMID 8178371.doi:10.1016/0168-9525(94)90232-1. 
  95. Maeshima, Kazuhiro; Laemmli, Ulrich K. (Abril de 2003).«A two-step scaffolding model for mitotic chromosome assembly».Developmental Cell4 (4): 467-480.ISSN 1534-5807.PMID 12689587.doi:10.1016/s1534-5807(03)00092-3. Consultado el 30 de septiembre de 2023. 
  96. Tavormina, Penny A.; Côme, Marie-George; Hudson, Joanna R.; Mo, Yin-Yuan; Beck, William T.; Gorbsky, Gary J. (8 de julio de 2002).«Rapid exchange of mammalian topoisomerase II alpha at kinetochores and chromosome arms in mitosis».The Journal of Cell Biology158 (1): 23-29.ISSN 0021-9525.PMC 2173008.PMID 12105179.doi:10.1083/jcb.200202053. Consultado el 30 de septiembre de 2023. 
  97. Iftode, C., Daniely, Y., Borowiec, J. (1999). «Replication protein A (RPA): the eukaryotic SSB».Crit Rev Biochem Mol Biol34 (3): 141-80.PMID 10473346.doi:10.1080/10409239991209255. 
  98. Creado a partir dePDB 1LMB
  99. Pabo, C., Sauer, R. (1984).«Protein-DNA recognition».Annu Rev Biochem53: 293-321.PMID 6236744.doi:10.1146/annurev.bi.53.070184.001453. 
  100. Myers, L., Kornberg, R. (2000).«Mediator of transcriptional regulation».Annu Rev Biochem69: 729-49.PMID 10966474.doi:10.1146/annurev.biochem.69.1.729. 
  101. Spiegelman, B., Heinrich, R. (2004). «Biological control through regulated transcriptional coactivators».Cell119 (2): 157-67.PMID 15479634.doi:10.1016/j.cell.2004.09.037. 
  102. Li, Z., Van Calcar, S., Qu, C., Cavenee, W., Zhang, M., Ren, B. (2003).«A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells».Proc Natl Acad Sci U S A100 (14): 8164-9.PMID 12808131.doi:10.1073/pnas.1332764100. Archivado desdeel original el 24 de septiembre de 2019. Consultado el 1 de agosto de 2008. 
  103. Creado a partir dePDB 1RVA
  104. Bickle, T., Krüger, D. (1993).«Biology of DNA restriction».Microbiol Rev57 (2): 434-50.PMID 8336674. 
  105. abDoherty, A., Suh, S. (2000).«Structural and mechanistic conservation in DNA ligases.».Nucleic Acids Res28 (21): 4051-8.PMID 11058099.doi:10.1093/nar/28.21.4051. Archivado desdeel original el 24 de septiembre de 2019. Consultado el 1 de agosto de 2008. 
  106. Schoeffler, A., Berger, J. (2005). «Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism».Biochem Soc Trans33 (Pt 6): 1465-70.PMID 16246147.doi:10.1042/BST20051465. 
  107. Tuteja, N., Tuteja, R. (2004). «Unraveling DNA helicases. Motif, structure, mechanism and function».Eur J Biochem271 (10): 1849-63.PMID 15128295.doi:10.1111/j.1432-1033.2004.04094.x. 
  108. Joyce, C., Steitz, T. (1995).«Polymerase structures and function: variations on a theme?».J Bacteriol177 (22): 6321-9.PMID 7592405. Archivado desdeel original el 24 de septiembre de 2019. Consultado el 1 de agosto de 2008. 
  109. Hubscher, U., Maga, G., Spadari, S. (2002).«Eukaryotic DNA polymerases».Annu Rev Biochem71: 133-63.PMID 12045093.doi:10.1146/annurev.biochem.71.090501.150041. 
  110. Johnson, A., O'Donnell, M. (2005).«Cellular DNA replicases: components and dynamics at the replication fork».Annu Rev Biochem74: 283-315.PMID 15952889.doi:10.1146/annurev.biochem.73.011303.073859. 
  111. Tarrago-Litvak, L., Andréola, M., Nevinsky, G., Sarih-Cottin, L., Litvak, S. (1994).«The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention».FASEB J8 (8): 497-503.PMID 7514143. 
  112. Martinez, E. (2002).«Multi-protein complexes in eukaryotic gene transcription».Plant Mol Biol50 (6): 925-47.PMID 12516863.doi:10.1023/A:1021258713850. 
  113. Creado a partir dePDB 1M6G
  114. Cremer, T., Cremer, C. (2001). «Chromosome territories, nuclear architecture and gene regulation in mammalian cells».Nat Rev Genet2 (4): 292-301.PMID 11283701.doi:10.1038/35066075. 
  115. Pál, C., Papp, B., Lercher, M. (2006). «An integrated view of protein evolution».Nat Rev Genet7 (5): 337-48.PMID 16619049.doi:10.1038/nrg1838. 
  116. O'Driscoll, M., Jeggo, P. (2006). «The role of double-strand break repair - insights from human genetics».Nat Rev Genet7 (1): 45-54.PMID 16369571.doi:10.1038/nrg1746. 
  117. Vispé, S., Defais, M. (1997).«Mammalian Rad51 protein: a RecA homologue with pleiotropic functions».Biochimie79 (9-10): 587-92.PMID 9466696.doi:10.1016/S0300-9084(97)82007-X. 
  118. Neale MJ, Keeney S (2006).«Clarifying the mechanics of DNA strand exchange in meiotic recombination».Nature442 (7099): 153-8.PMID 16838012.doi:10.1038/nature04885. 
  119. Dickman, M., Ingleston, S., Sedelnikova, S., Rafferty, J., Lloyd, R., Grasby, J., Hornby, D. (2002). «The RuvABC resolvasome».Eur J Biochem269 (22): 5492-501.PMID 12423347.doi:10.1046/j.1432-1033.2002.03250.x. 
  120. Joyce, G. (2002). «The antiquity of RNA-based evolution».Nature418 (6894): 214-21.PMID 12110897.doi:10.1038/418214a. 
  121. Orgel, L.«Prebiotic chemistry and the origin of the RNA world».Crit Rev Biochem Mol Biol39 (2): 99-123.PMID 15217990.doi:10.1080/10409230490460765. 
  122. Davenport, R. (2001).«Ribozymes. Making copies in the RNA world».Science292 (5520): 1278.PMID 11360970.doi:10.1126/science.292.5520.1278a. 
  123. Szathmáry, E. (1992).«What is the optimum size for the genetic alphabet?».Proc Natl Acad Sci U S A89 (7): 2614-8.PMID 1372984.doi:10.1073/pnas.89.7.2614. 
  124. Lindahl, T. (1993).«Instability and decay of the primary structure of DNA».Nature362 (6422): 709-15.PMID 8469282.doi:10.1038/362709a0. 
  125. Vreeland, R., Rosenzweig, W., Powers, D. (2000).«Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal».Nature407 (6806): 897-900.PMID 11057666.doi:10.1038/35038060. 
  126. Hebsgaard, M., Phillips, M., Willerslev, E. (2005).«Geologically ancient DNA: fact or artefact?».Trends Microbiol13 (5): 212-20.PMID 15866038.doi:10.1016/j.tim.2005.03.010. 
  127. Nickle, D., Learn, G., Rain, M., Mullins, J., Mittler, J. (2002).«Curiously modern DNA for a “250 million-year-old” bacterium».J Mol Evol54 (1): 134-7.PMID 11734907.doi:10.1007/s00239-001-0025-x. 
  128. Birnbaum, D., Coulier, F., Pébusque, M. J., Pontarotti, P. (2000). «“Paleogenomics”: looking in the past to the future».J Exp Zool.288 ((1):).21-2. [1]
  129. Blanchette, M., Green, E. D., Miller, W., Haussler, D. (2004). «Reconstructing large regions of an ancestral mammalian genome in silico».Genome Res.14 ((12):).2412-23.  Erratum in: Genome Res. 2005 Mar;15(3):451.[2]
  130. Gaucher, Eric A.; Thomson, J. Michael; Burgan, Michelle F.; Benner, Steven A. (18 de septiembre de 2003).«Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins».Nature425 (6955): 285-288.ISSN 1476-4687.PMID 13679914.doi:10.1038/nature01977. Consultado el 23 de agosto de 2024. 
  131. Thornton, Joseph W. (mayo de 2004).«Resurrecting ancient genes: experimental analysis of extinct molecules».Nature Reviews. Genetics5 (5): 366-375.ISSN 1471-0056.PMID 15143319.doi:10.1038/nrg1324. Consultado el 23 de agosto de 2024. 
  132. Benner, Steven A.; Caraco, M. Daniel; Thomson, J. Michael; Gaucher, Eric A. (3 de mayo de 2002).«Planetary biology--paleontological, geological, and molecular histories of life».Science (New York, N.Y.)296 (5569): 864-868.ISSN 1095-9203.PMID 11988562.doi:10.1126/science.1069863. Consultado el 23 de agosto de 2024. 
  133. Brenner, S. A., Carrigan, M. A., Ricardo, A., Frye, F. (2006). «Setting the stage: the history, chemistry and geobiology behind RNA».The RNA World, 3rd Ed. Cold Spring Harbor Laboratory Press.ISBN 0-87969-739-3. [3]Archivado el 10 de agosto de 2011 enWayback Machine.
  134. abcGriffiths, J. F. A.et al. (2002).Genética. McGraw-Hill Interamericana.ISBN 84-486-0368-0. 
  135. abWatson, J. D.; Baker, T. A.; Bell, S. P.; Gann, A.; Levine, M. y Losick, R. (2004).Molecular Biology of the Gene (Fifth edition edición). San Francisco: Benjamin Cummings.ISBN 0-321-22368-3. La referencia utiliza el parámetro obsoleto|coautores= (ayuda)
  136. Sanger, F., Coulson, A. R. «A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase.»J Mol Biol. 1975 mayo 25;94(3):441-448.
  137. Sanger, F., Nicklen, S., y Coulson, A. R., «DNA sequencing with chain-terminating inhibitors.»Proc Natl Acad Sci U S A, diciembre de 1977; 74(12): 5463-5467.
  138. «Bartlett & Stirling (2003) «A Short History of the Polymerase Chain Reaction.» En:Methods Mol Biol. 226:3-6.». Archivado desdeel original el 24 de diciembre de 2007. Consultado el 14 de abril de 2008. 
  139. Southern, E. M. (1975): «Detection of specific sequences among DNA fragments separated by gel electrophoresis.»J Mol Biol., 98:503-517.PMID 1195397
  140. Alwine, J. C., Kemp, D. J., Stark, G. R. (1977). «Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes».Proc. Natl. Acad. Sci. U.S.A.74 (12): 5350-4.PMID 414220.doi:10.1073/pnas.74.12.5350. 
  141. Neal Burnette, W. (abril de 1981).«'Western blotting': electrophoretic transfer of proteins from sodium dodecyl sulfate — polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A».Analytical Biochemistry (United States: Academic Press)112 (2): 195-203.ISSN 0003-2697.PMID 6266278.doi:10.1016/0003-2697(81)90281-5. Archivado desdeel original el 14 de mayo de 2008. Consultado el 3 de abril de 2008. La referencia utiliza el parámetro obsoleto|mes= (ayuda)
  142. Miller, W. L. (1979).«Use of recombinant DNA technology for the production of polypeptides».Advances in Experimental Medicine and Biology118: 153-174.ISSN 0065-2598.PMID 91311.doi:10.1007/978-1-4684-0997-0_16. Consultado el 30 de septiembre de 2023. 
  143. Leader, Benjamin; Baca, Quentin J.; Golan, David E. (enero de 2008).«Protein therapeutics: a summary and pharmacological classification».Nature Reviews. Drug Discovery7 (1): 21-39.ISSN 1474-1784.PMID 18097458.doi:10.1038/nrd2399. Consultado el 30 de septiembre de 2023. 
  144. Dingermann, Theo (enero de 2008).«Recombinant therapeutic proteins: production platforms and challenges».Biotechnology Journal3 (1): 90-97.ISSN 1860-7314.PMID 18041103.doi:10.1002/biot.200700214. Consultado el 30 de septiembre de 2023. 
  145. Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán (noviembre de 2008).«Targeted gene insertion for molecular medicine».Journal of Molecular Medicine (Berlin, Germany)86 (11): 1205-1219.ISSN 0946-2716.PMID 18607557.doi:10.1007/s00109-008-0381-8. Consultado el 30 de septiembre de 2023. 
  146. Houdebine, Louis-Marie (2007).«Transgenic animal models in biomedical research».Methods in Molecular Biology (Clifton, N.J.)360: 163-202.ISSN 1064-3745.PMID 17172731.doi:10.1385/1-59745-165-7:163. Consultado el 30 de septiembre de 2023. 
  147. Soler, Eric; Thépot, Dominique; Rival-Gervier, Sylvie; Jolivet, Geneviève; Houdebine, Louis-Marie (septiembre de 2006).«Preparation of recombinant proteins in milk to improve human and animal health».Reproduction Nutrition Development46 (5): 579-588.ISSN 0926-5287.doi:10.1051/rnd:2006029. Consultado el 30 de septiembre de 2023. 
  148. Chávez, A.; Muñoz de Chávez, M. (septiembre de 2003).«Nutrigenomics in public health nutrition: short-term perspectives».European Journal of Clinical Nutrition(en inglés)57 (1): S97-S100.ISSN 1476-5640.doi:10.1038/sj.ejcn.1601809. Consultado el 30 de septiembre de 2023. 
  149. Vasil, Indra K. (agosto de 2007).«Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.)».Plant Cell Reports26 (8): 1133-1154.ISSN 0721-7714.PMID 17431631.doi:10.1007/s00299-007-0338-3. Consultado el 30 de septiembre de 2023. 
  150. Daniell, H., Dhingra, A. (2002). «Multigene engineering: dawn of an exciting new era in biotechnology».Curr Opin Biotechnol13 (2): 136-41.PMID 11950565.doi:10.1016/S0958-1669(02)00297-5. 
  151. Job D (2002). «Plant biotechnology in agriculture».Biochimie84 (11): 1105-10.PMID 12595138.doi:10.1016/S0300-9084(02)00013-5. 
  152. Collins, A., Morton, N. (1994).«Likelihood ratios for DNA identification».Proc Natl Acad Sci USA91 (13): 6007-11.PMID 8016106.doi:10.1073/pnas.91.13.6007. 
  153. Weir, B., Triggs, C., Starling, L., Stowell, L., Walsh, K., Buckleton, J. (1997).«Interpreting DNA mixtures».J Forensic Sci42 (2): 213-22.PMID 9068179. 
  154. Jeffreys, A., Wilson, V., Thein, S. (1985). «Individual-specific 'fingerprints' of human DNA».Nature316 (6023): 76-9.PMID 2989708.doi:10.1038/316076a0. 
  155. «Colin Pitchfork — first murder conviction on DNA evidence also clears the prime suspect.» Forensic Science Service. Consultado el 23 de diciembre de 2006.
  156. «DNA Identification in Mass Fatality Incidents». National Institute of Justice. septiembre de 2006. Archivado desdeel original el 12 de noviembre de 2006. 
  157. Bhattacharya, Shaoni.«Killer convicted thanks to relative's DNA».newscientist.com (20 abril 2004). Consultado el 22 de diciembre de 2006.
  158. Baldi, Pierre; Brunak, Soren (2001).Bioinformatics: The Machine Learning Approach.MIT Press.ISBN 978-0-262-02506-5. 
  159. Gusfield, Dan.Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology.Cambridge University Press, 15 January 1997.ISBN 978-0-521-58519-4.
  160. Sjölander, K. (2004).«Phylogenomic inference of protein molecular function: advances and challenges».Bioinformatics20 (2): 170-9.PMID 14734307.doi:10.1093/bioinformatics/bth021. 
  161. Mount, D. M. (2004).Bioinformatics: Sequence and Genome Analysis (2 edición). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.ISBN 0879697121. 
  162. Yin, Peng; Hariadi, Rizal F.; Sahu, Sudheer; Choi, Harry M. T.; Park, Sung Ha; LaBean, Thomas H.; Reif, John H. (8 de agosto de 2008).«Programming DNA Tube Circumferences».Science(en inglés)321 (5890): 824-826.ISSN 0036-8075.doi:10.1126/science.1157312. Consultado el 30 de septiembre de 2023. 
  163. Modelos de ADN en papiroflexia realizados en el Sanger Center (UK)[4]
  164. Wray, G. (2002).«Dating branches on the tree of life using DNA».Genome Biol3 (1): REVIEWS0001.PMID 11806830.doi:10.1046/j.1525-142X.1999.99010.x. Archivado desdeel original el 24 de septiembre de 2019. Consultado el 7 de agosto de 2008. 
  165. «Lost Tribes of Israel - Broadcast Transcript Nova (TV series)».PBS.org. 22 de febrero de 2000. Archivado desdeel original el 8 de noviembre de 2001. Consultado el 4 marzo de 2006). 
  166. Kleiman, Yaakov (13 de enero de 2000).«The Cohanim - DNA Connection: The fascinating story of how DNA studies confirm an ancient biblical tradition».aish.com. Archivado desdeel original el 25 de abril de 2016. Consultado el 4 de marzo de 2006. 
  167. Panda, Darshan; Molla, Kutubuddin Ali; Baig, Mirza Jainul; Swain, Alaka; Behera, Deeptirekha; Dash, Manaswini (2018).«DNA as a digital information storage device: hope or hype?».3 Biotech8 (5).doi:10.1007/s13205-018-1246-7. 

Bibliografía

Enlaces externos

Control de autoridades

Obtenido de «https://es.wikipedia.org/w/index.php?title=Ácido_desoxirribonucleico&oldid=172094945»
Categorías:
Categorías ocultas:

[8]ページ先頭

©2009-2026 Movatter.jp