Se vi volas esprimi vian opinion rilate al la konveneco de tiu propono, bonvolu alskribi vian opinion en labaloto. Kiam la baloto pri tiu ĉi artikolo estos finiĝinta, bonvolu forigi ĉi tiun ŝablonon el la artikolo.
laŝanĝiĝojn, kiuj okazas al la materio kaj la kondiĉojn necesajn por estigi aŭ eviti tiajn ŝanĝiĝojn.
Ĉia substanco apartenas al unu el la du ĉefaj kategorioj:pura substanco aŭmiksaĵo. Gravas rimarki, ke ekzistas signifa diferenco inter la terminoj "substanco" kaj "pura substanco". Substanco estas ĝenerala termino por iu ajn speco de materio.
Kemiistoj studas laĥemiajn elementojn. Ĉiu elemento havas nur unu specon deatomo. En la kemio la elementoj diferencas laŭ la nombro de la elektronoj en siaj atomoj kaj laŭ siaj atompezoj. Ĉiu atomo de iu elemento havas la saman nombron daprotonoj, sed la nombro deneŭtronoj povas varii, farante malsamajnizotopojn. Se al atomo mankaselektrono, la atomo estasjonigita.
Karbono estas elemento tre grava por la vivo. Lakombinaĵoj kun karbono estas organikaj, kaj la kombinaĵoj sen karbono estas neorganikaj.
La vortokemio devenas el la novgrekaχημεία [çiːˈmiːa], laŭlitere"[la arto de metal-]gisado" en la senco demetamorfozo. Ekde la13-a jarcento ekzistis la vortoalkemio, tio estas"la arto pri orfabrikado"[1]: la vorto devenas verŝajne el laarabaal-kīmiyá, kiu povas signifi interalie"ŝtono de la saĝuloj", eble el la malnova greka χυμεία,chymeía, "la gisado", aŭ el lakopta/antikvaegiptakemi, "nigraj teroj".
La kemio de antikveco konsistis el la kolektita praktika sciaro pri materiŝanĝiĝprocedoj kaj naturfilozofaj ideoj. La kemio de lamezepoko evoluiĝis el alkemio, kiun oni praktikis enĈinujo,Eŭropo kajHindujo jam de jarmiloj.
Alkemiistoj okupiĝis kaj pri la nobeligo de metaloj (produktado deoro el aliaj nenobelaj metaloj), sed ankaŭ pri la eltrovo de kuraciloj, aŭ ĉionkuracilo por ĉiuj malsanoj. Ĉefe por la produktado de oro, alkemiistoj serĉiseliksiron, laŝtonon de la saĝuloj, kiu ŝanĝu nenobelan ("malsanan") metalon en nobelan ("sanan"). Ankaŭ en la medicina fako de alkemio oni serĉis eliksiron, la viveleksiron, tio estas kuracilo por ĉiaj malsanoj, kiuj fine ankaŭ donos nemortemon. Tamen neniu alkemiisto iam ajn trovis la ŝtonon de la saĝuloj aŭ la viveliksiron.
Ĝis la fino de la16-a jarcento la imaga mondo de alkemiistoj kutime ne baziĝis je sciencaj esploroj, sed pri spertaĵoj kaj empiriaj receptoj. Alkemiistoj multe eksperimentis kaj uzis por notado la samajn simbolojn kielastrologoj. La mistera maniero de iliaj eksperimentoj, kiel la ofte estigitaj koloraj flameroj, fumo aŭ eksplodoj igis ilin konataj kaj foje persekutitaj kielmagiistoj kajsorĉistoj. Alkemiistoj uzis la samajn aparatojn kaj ilojn por siaj eksperimentoj, kiajn oni uzas ankoraŭ nuntempe.
Alberto la Granda aŭAlbertus Magnus estis fama alkemiisto. Kielklerikano li traktis tiajn temojn kaj trovis dum eksperimentado novankemian elementon, nomearsenon. NurParacelso evoluigis alkemion de empiria al pli eksperimenta scienco, kiu iĝis la bazo de la moderna kemio.
Kemio kielscienco ricevis gravajn impulsojn en la 18-a kaj 19-aj jarcentoj: ĝi estis starigita sur la bazojn de mezurprocedoj kaj eksperimentoj - kiel la uzo de lapesilo kaj la pruveblo de hipotezoj kaj teorioj pri materioj kaj materiŝanĝiĝoj.
Nuntempe kemio estas grava parto de kulturo. Kemiaj produktoj ekzistas ĉie, eĉ kiam oni ne konscias pri tio. Tamen akcidentoj de la kemiaindustriego, kiel ekzemple tiu deSeveso enItalujo kaj deBhopalo enBarato, donis tre negativan bildon al kemio, tiel kefrapfrazoj kiel"for de kemio!"[2] populariĝis, kvankam tio enfermas gravan kontraŭdiron, ĉar absolute ĉio ĉirkaŭe estas kemio, nome komponita de atomoj kaj molekuloj, kiuj konstante povas ŝanĝiĝi kaj fakte ŝanĝiĝas, partikulare se temas pri organikaj estaĵoj.
La nuntempa modelo de atoma strukturo estas laKvantum-mekanika modelo.[3] Tradicia kemio startis per la studo deelementaj partikloj,atomoj,molekuloj,[4]substancoj,metaloj,kristaloj kaj aliaj agregaĵoj dematerio. Materio povas esti studita en solida, likva, gasa kaj plasmastatoj, ĉu izole ĉu kombine. Lainteragoj,reakcioj kaj transformoj kiuj estas studitaj en kemio estas kutime la rezulto de interagadoj inter atomoj, kio kondukis al rearanĝoj de la kemiaj ligiloj kiuj tenas atomojn kune. Tiaj kondutoj estas studitan en kemiajlaboratorioj.
La kemiaj laboratorioj stereotipe uzas variajn formojn de laboratoria vitrujaro. Tamen vitrujaro ne estas centra por kemio, kaj granda parto de la eksperimentoj (same kiel la aplikita/industria) kemio estas farata sen ĝi.
Kemia reakcio estas transformo de kelkaj substancoj en unu aŭ pliaj diferencaj substancoj.[5] La bazo de tia kemia transformado estas la rearanĝo de elektronoj en la kemiaj ligiloj inter atomoj. Ĝi povas esti simbole priskribita pere dekemiaj ekvacioj de simboloj kaj formuloj, kiuj kutime roluligas atomojn kiel subjektoj. La nombro de atomoj kaj maldekstre kaj dekstre de la ekvacio por kemia transformado estas egala. (Kiam la nombro de atomoj en unu flanko estas malegala, la transformado estas referencata kielnuklea reakcio aŭradioaktiva malkompono.) La tipo de kemiaj reakcioj kiujn substanco povas suferi kaj la energiŝanĝoj kiuj povas akompani ĝin estas limigitaj per kelkaj bazaj reguloj, konataj kielsciencaj leĝoj.
Konsideroj prienergio kajentropio estas sendube gravaj en preskaŭ ĉiuj kemiaj studoj. Kemiaj substancoj estas klasigitaj laŭ terminoj de tiesstrukturo, fazo, same kiel laŭ ties kemiaj komponoj. Ili povas esti analizitaj uzante ilojn porkemia analizo, ekz.spektroskopio kaj kromatografio. Sciencistoj kiuj dediĉas sin al la kemia esplorado estas konataj kielkemiistoj.[6] Plej kemiistoj specializiĝas en unu aŭ pliaj sub-fakoj. Kelkajkonceptoj estas esencaj por la studo de kemio; kelkaj el tiuj estas la jenaj:[7]
Pli detalaj informoj troveblas en artikoloMaterio.
En kemio, materio estas difinita kiel io kiu havasripozan mason kajvolumenon (ĝi okupas spacon) kaj estas farita perpartikloj. Ankaŭ la partikloj kiuj formas materion havas ripozan mason – ne ĉiuj partikloj havas ripozan mason, kiel lafotono. Materio povas esti purakemia substanco aŭmiksaĵo de substancoj.[8]
Diagramo de atomo bazita sur la modelo Rutherford.
La atomo estas la baza unuo de kemio. Ĝi konsistas el densa kerno nomeatoma nukleo ĉirkaŭita de spaco okupita per elektronaro. La nukleo estas formita de pozitive ŝarĝitajprotonoj kaj neŝarĝitajneŭtronoj (kune nomitajnukleonoj), dum la elektronaro konsistas el negative ŝarĝitajelektronoj kiuj orbitas ĉirkaŭ la nukleo. En neŭtrala atomo, la negative ŝarĝitaj elektronoj ekvilibrigas la pozitivan ŝarĝon de la protonoj. La nukleo estas densa; la maso de nukleono estas proksimume 1836 fojojn tiu de elektrono, kvankam la radiuso de atomo estas ĉirkaŭ 10 000 fojojn tiu de sia nukleo.[9][10]
La atomo estas ankaŭ la plej malgranda ento kiu povas esti kapabla reteni la kemiajn proprecojn de la elemento, kiel estas laelektronegativeco,joniga energio, preferatajoksidiĝaj statoj, kunordiga nombro, kaj preferataj tipoj de ligoj kiuj forma (ekz.,metalaj,jona,kovalenta).
Normiga formo de laperioda tabelo de kemiaj elementoj. La koloroj reprezentas diferencajn kategoriojn de elementoj.
Pli detalaj informoj troveblas en artikoloKemia elemento.
Kemia elemento estas pura substanco kiu estas komponita de unusola tipo de atomo, karakterizita de sia partikulara nombro deprotonoj en la nukleoj de siaj atomoj, konata kielatoma nombro kaj reprezentata pere de la simboloZ. Lamasnombro estas la sumo de la nombro de protonoj kaj neŭtronoj en nukleo. Kvankam ĉiuj la nukleoj de ĉiuj atomoj apartenantaj al unu elemento havas la saman atoman nombron, ili ne necese havas la saman masnombron; atomoj de elemento kiu havas diferencajn masnombrojn estas konata kielizotopoj. Por ekzemplo, ĉiuj atomoj kun 6 protonoj en siaj nukleoj estas atomoj de la kemia elementokarbono, sed atomoj de karbono povas havi masnombrojn de 12 aŭ 13.[10]
La normiga prezentado de kemiaj elementoj estas en laperioda tabelo, kiu ordigas elementojn laŭ atoma nombro. La perioda tabelo estas aranĝita engrupoj, aŭ kolumnoj, kajperiodoj, aŭ linioj. La perioda tabelo estas utila por identigi periodajn proprecojn.[11]
Komponaĵo estas pure kemia substanco komponita el pli ol unu elemento. La proprecoj de komponaĵo montras malmultan similecon kun tiuj de siaj elementoj.[12] La normiga nomenklaturo de komponaĵoj estas decidita de laInternacia Unio de Teoria kaj Aplika Kemio (IUTAK).organikaj kombinaĵoj estas nomitaj laŭ la sistemo de organika nomenklaturo.[13] La nomoj por laneorganikaj kombinaĵoj estas kreata laŭ la sistemo de neorganika nomenklaturo. Kiam komponaĵo havas pli ol unu komponanto, ili estas dividataj en du klasoj, nome elektropozitivaj kaj elektronegativaj komponantoj.[14] Aldone, la usona servo "Chemical Abstracts Service" organizis metodon por indeksigi kemiajn substancojn. En tiu skemo ĉiu kemia substanco estas identigebla per numero konata kielCAS-numero.
Pli detalaj informoj troveblas en artikoloMolekulo.
Bul-bastona reprezentaĵo de molekulo dekafeino (C8H10N4O2).
Molekulo estas la plej malgranda nedividebla parto de purakemia substanco kiu havas sian unikan aron de kemiaj proprecoj, tio estas, ties potencialo por elteni ian aron de kemiaj reagoj kun aliaj substancoj. Tamen, tiu difino bone funkcias nur por substancoj kiuj estas komponitaj el molekuloj, kio ne okazas en multaj substancoj (vidu sube). Molekuloj estas tipe aro de atomoj kunligitaj perkovalentaj ligoj, tiel ke la strukturo estas elektre neŭtrala kaj ĉiuj valentaj elektronoj estas parigitaj kun aliaj elektronoj ĉu per ligoj ĉu en izolaj paroj.
Tiel, molekuloj ekzistas kiel elektre neŭtralaj unuoj, male al jonoj. Kiam tiu regulo estas rompita, havigante al la "molekulo" ŝarĝon, la rezulto estas foje nomita molekula jono aŭ pluratoma jono. Tamen, la diskreta kaj separata naturo de la molekula koncepto kutime postulas, ke molekulaj jonoj aperu nur en bone-separata formo, kiel direktita radio en vakuo enmas-spektromezurilo. Ŝarĝitaj pluratomaj kolektoj ekzistantaj en solidoj (por ekzemplo, komunaj sulfataj aŭ nitrataj jonoj) estas ĝenerale nekonsiderataj "molekuloj" en kemio. Kelkaj molekuloj enhavas unu aŭ pliajn neparigitajn elektronojn, kreanteradikalojn. Plej radikaloj estas kompare reagemaj, sed kelkaj, kiel laNitrogena monooksido (NO) povas esti stabilaj.
La "inertaj" aŭnoblagasaj elementoj (heliumo,neono,argono,kriptono,ksenono kajradono) estas komponitaj el izolaj atomoj kiel plej malgranda diskreta unuo, sed la aliaj izolaj kemiaj elementoj konsistas el ĉu molekuloj aŭ ĉu retoj de atomoj ligitaj unuj al aliaj iel. Identigeblaj molekuloj komponas familiarajn substancojn kiel akvo, aero, kaj multajn organikajn komponaĵojn kiel alkoholo, sukero, benzino, kaj la variajkuraciloj.
Tamen, ne ĉiuj substancoj aŭ kemiaj komponaĵoj konsistas el diskretaj molekuloj, kaj ja plej el la solidaj substancoj kiuj dormas la solidan kruston, mantelon kaj kernon de la Tero estas kemiaj komponaĵoj sen molekuloj. Tiuj aliaj tipoj de substancoj, kiel la jonaj komponaĵoj kaj la ĉensolidoj, estas organizitaj tiel ke mankas la ekzisto de identigeblaj molekulojper se. Anstataŭe, tiuj substancoj estas studataj kielunuecaj formuloj aŭunuecaj ĉeloj kiel la plej malgranda ripetata strukturo ene de la substanco. Ekzemploj de tiaj substancoj estas mineralaj saloj (kiel latablosalo), solidoj kiel karbono kaj diamantoj, metaloj, kaj familiarajsilico kajsilikatmineraloj kielkvarco kajgranito.
Unu el la ĉefaj karakteroj de molekulo estas ties geometrio ofte nomata tiesstrukturo. Kvankam la strukturo de diatomaj, triatomaj aŭ kvar-atomaj molekuloj povas esti triviala (linia, angula piramida ktp.), la strukturo de pluratomaj molekuloj, kiuj estas konstituitaj de pli ol ses atomoj (de kelkaj elementoj) povas esti ŝlosila pro sia kemia naturo.
Kemia substanco estas tipo de materio kun difinita kemia kompono kaj aro de kemiaj proprecoj.[15] Kolekto de substancoj estas nomata mikso. Ekzemploj de miksoj estasaero kajalojoj.[16]
Aldone al la specifaj kemiaj proprecoj kiuj distingigas diferencajn kemiajn klasifikojn, kemiaĵoj povas ekzisti en kelkaj fazoj. Por la plej parto, la kemiaj klasigoj estas sendependaj el tiuj kernaj fazklasifikoj; tamen, kelkajpli raraj fazoj estas nekongruebaj kun kelkaj kemiaj proprecoj.Fazo estas serio de statoj de kemia sistemo kiu havas similajn kernajn strukturajn proprecojn, laŭ ampleksa gamo de kondiĉoj, kielpremo aŭtemperaturo.
Fizikaj proprecoj, kieldenseco kajrefrakta indico, tendencas fali ene de valoroj karakteraj de la fazo. La fazo de materio estas difinita defaztransiro, kio okazas kiamenergio enmetita aŭ elmetita en aŭ el la sistemo venas rearanĝi la strukturon de la sistemo, anstataŭ ŝanĝi la kernajn kondiĉojn.
Foje la distingo inter fazoj povas esti kontinua anstataŭ havi diskretan limon. En tiu okazo la materio estas konsiderata ensuperkrita stato. Kiam tri statoj kuniĝas baze sur la kondiĉoj, tio estas konata kieltriobla punkto kaj ĉar tio estas nevaria, ĝi estas konvena sistemo difini kondiĉaron.
La plej familiaraj ekzemploj de fazoj estassolidoj,likvoj, kajgasoj. Multaj substancoj montras multajn solidajn fazojn. Por ekzemplo, estas tri fazoj de solidafero (alfa, gamma, kaj delta) kiuj varias baze sur temperaturo kaj premo. Ĉefa diferenco inter solidaj fazoj estas lakristala strukturo, aŭ aranĝo, de la atomoj. Alia fazo ofte trafita en la studo de kemio estas laakveca fazo, kiu estas la stato de substancoj dissolvitaj en akveca solvaĵo (tio estas, en akvo).
Malpli familiaraj fazoj estas laplasmoj, la kondensaĵoj Bose–Einstein, lafermionaj kondensaĵoj kaj laparamagnetaj kajferomagnetaj fazoj demagnetaj materialoj. Dum plej familiaraj fazoj temas pri tri-dimensiaj sistemoj, estas eble ankaŭ difino analogojn en du-dimensiaj sistemoj, kiuj estis ricevintaj atenton pro sia gravo por sistemoj enbiologio.
Pli detalaj informoj troveblas en artikoloKemia ligo.
Animacio de la procezo de jona ligo internatrio (Na) kajkloro (Cl) por forminatrian kloridon, nome komuna tablosalo. Jona ligo postulas unu atomon kiu ekprenas valencajn elektronojn el alia (kontraste al kunhavo, kio okazas en kovalenta ligo).
Oni diras, ke atomoj kunmetitaj en molekuloj aŭ kristaloj estas ligitaj unu kun alia. Kemia ligo povas esti komprenita kiel la multpolusa ekvilibro inter la pozitivaj ŝarĝoj en la nukleoj kaj la negativaj ŝarĝoj oscilantaj ĉirkaŭ ili.[17] Pli ol simpla altiro kaj malaltiro, la energioj kaj distribuoj karakterizas la disponeblon de elektrono por ligi sin.
Kemia ligo povas estikovalenta ligo,jona ligo,hidrogena ligo aŭ okazigita per laforto de Van-der-Waals. Ĉiu el tiuj tipoj de ligoj estas atribuita al ioma potencialo. Tiuj potencialoj kreas lainteragojn kiuj tenas atomojn kune enmolekuloj aŭkristaloj. En multaj simplaj komponaĵoj, la teorio de valenta ligo, la modelo de Valenta Elpelo de Paro de Elektronujoj (VSEPR-teorio), kaj la koncepto deoksidiĝa nombro povas esti uzata por klarigi molekulajn strukturon kaj komponon.
Jona ligo estas formita kiam metalo perdas unu aŭ pliajn el siaj elektronoj, iĝante pozitive ŝarĝitakatjono, kaj la elektronoj estas tiam akiritaj de ne-metala atomo, iĝante negative ŝarĝitaanjono. La du kontraŭe ŝarĝitaj jonoj altiras unu la alian, kaj la jona ligo estas la elektrostatika forto de altiro inter ili. Por ekzemplo,natrio (Na), metalo, perdas unu elektronon por iĝi katjono Na+ dumkloro (Cl), ne-metalo, akiras tiun elektronon por iĝi Cl−. La jonoj estas tenitaj kune pro la elektrostatika forto de altiro, kaj tiel la komponaĵonatria klorido (NaCl), nome komuna tablosalo, estas formata.
En la molekulo demetano (CH4), la karbona atomo kunhavas paron de valentaj elektronoj kun ĉiu el la kvar hidrogenaj atomoj. Tiel, la okopa regulo estas kontentigita per C-atomo (ĝi havas ok elektronojn en sia valentujo) kaj la duopa regulo estas kontentigita per la H-atomoj (ili havas du elektronojn en siaj valentujoj).
En kovalenta ligo, unu aŭ pliaj paroj devalentelektronoj estas kunhavataj de du atomoj: la rezultanta elektre neŭtrala grupo de ligitaj atomoj estas nomitamolekulo. Atomoj kunhavas valentelektronojn tiel por krei elektronan kunfiguron denobla gaso (ok elektronoj en sia plej ekstera ujo (ŝelo)) por ĉiu atomo. Oni diras, ke atomoj kiuj tendencas kombini tiel ke ĉiuj el ili havas ok elektronojn en sia valentujo sekvas laokopan regulon. Tamen, kelkaj elementoj kielhidrogeno kajlitio bezonas nur du elektronojn en sia plej ekstera ujo por akiri tiun stabilan kunfiguron; oni diras, ke tiuj atomoj sekvas laduopan regulon, kaj tiel ili atingas la elektronan kunfiguron de la nobla gasoheliumo, kiu havas du elektronojn en sia plej ekstera ujo
Simile, teorioj el la klasikafiziko povas esti uzataj por antaŭdiri multajn jonajn strukturojn. Kun pli komplikaj komponaĵoj, kiel en metalkompleksoj, la teorio de valenta ligo estas malpli aplikebla kaj alternativaj alproksimiĝoj kiel la teorio de molekula orbito, estas ĝenerale pli uzataj. Vidu ekzemple diagramon pri elektronikaj orbitoj.
Pli detalaj informoj troveblas en artikoloEnergio.
En la kunteksto de kemio, energio estas atributo de substanco kiel konsekvenco de siaatoma,molekula aŭ agregaĵa kemia strukturo. Ĉar kemia transformo estas akompanata de ŝanĝo en unu aŭ pliaj tipoj de tiuj tipoj de strukturoj, ĝi estas senvarie akompanata de endoterma pliigo aŭmalpliigo deenergio de la koncernaj substancoj. Kelka energio estas transigita inter la ĉirkaŭo kaj la reakciantoj de la reakcio en la formo devarmo aŭ delumo; tial la produktoj de reakcio povas havi pli aŭ malpli da energio ol la reakciantoj.
Oni diras, ke reakcio estas eksergona se la fina stato estas pli malalta en la energia skalo ol la dekomenca stato; okaze de endergona reakcio la situacio estas la mala. Oni diras, ke reakcio estas eksoterma se la reakcio liberigas varmon al la ĉirkaŭo; en la okazo de endotermaj reakcioj, la reakcio absorbas varmon el la ĉirkaŭo.
Kemiaj reakcioj estas senvarie ne eblaj se la reakciantoj ne surpasas energibarilon konatan kiel "aktiviga energio". Larapido de kemia reakcio (je difinita temperaturo T) estas rilata al la aktiviga energio E, fare de la populacifaktoro de Boltzmann – kio estas la probableco ke molekulo havu energion pli grandan aŭ egalan al E je difinita temperaturo T. Tiu eksponencia dependeco de reakcia indico pri temperaturo estas konata kielEkvacio de Arrhenius. La aktiviga energio necesa por ke okazu kemia reakcio povas esti en la formo de varmo, de lumo, deelektro aŭ de mekanikaforto en la formo deultrasono.[18]
Rilata koncepto delibera energio, kiu aligas ankaŭ prientropiajn konsiderojn, estas tre utilaj rimedoj por antaŭvidi la fareblon de reakcio kaj determini la staton de ekvilibro de kemia reakcio, enkemia termodinamiko. Reakcio estas farebla nur se la totala ŝanĝo en laGibsa libera energio estas negativa,; se ĝi estas egala al nulo, oni diras, ke la kemia reakcio estas jeekvilibro.
Ekzistas nur limigitaj eblaj statoj de energio por elektronoj, atomoj kaj molekuloj. Tiuj estas determinitaj de la reguloj dekvantuma mekaniko, kiu postulas kvantumigon de energio je ligila sistemo. Oni diras, ke la atomoj/molekuloj en pli alta energistato estas ekscititaj. La molekuloj/atomoj de substanco en ekscitita energistato estas ofte multe pli reakciemaj; tio estas, pli pretaj al kemiaj reakcioj.
La fazo de substanco estas senvarie determinita per sia energio kaj la energio de sia ĉirkaŭo. Kiam la intermolekulaj fortoj de substanco estas tiaj ke la energio de la ĉirkaŭo ne estas sufiĉa por superi ilin, ĝi okazas en pli ordigita fazo kiel likva aŭ solida kiel okazas ĉeakvo (H2O); likvo je normala temperaturo ĉar ties molekuloj estas ligitaj perhidrogenaj ligoj.[19] Dumehidrogena sulfido (H2S) estasgaso je normala temperaturo kaj normiga premo, ĉar ties molekuloj estas ligitaj per pli malfortaj dupolus-dupolusaj interagoj.
La transigo de energio el unu kemia substanco al alia dependas de lagrando de energiokvantuma elsendita el unu substanco. Tamen, varmenergio estas ofte transigita pli facile el preskaŭ ajna substanco al alia pro la fononoj responsaj pri la vibraj kaj rotaciaj energiniveloj en substanco kiu havas multe malpli da energio olfotonoj postulitaj por la transigo de la elektrona energio. Tiel, ĉar vibraciaj kaj rotaciaj energiniveloj estas pli deproksime spacigita ol la elektronaj energiniveloj, varmo estas pli ol facile transigita inter substancoj relativaj al la lumo ol al aliaj formoj de elektrona energio. Por ekzemplo, ultraviola elektromagneta radiado ne estas transigita tiom multe efike el unu substanco al alia kiel terma aŭ elektra energio.
La ekzisto de karakterizaj energiniveloj por diferencajkemiaj substancoj estas utila por ties identigo per analizo despektraj linioj. Diferencaj tipoj de spektroj estas ofte uzataj en kemiaspektroskopio, ekz. infraruĝa spektroskopio, mikroonda spektroskopio, nukleamagneta resonanco, elektrona spinilrezonanco ktp. Spektroskopio estas uzata ankaŭ por identigi la komponon de malproksimaj objektoj – kiel steloj kaj malproksimaj galaksioj – per analizo de iliaj radiaj spektroj.
La termino "kemia energio" estas ofte uzata por indiki la potencialon de kemia substanco por ricevi transformon trakemia reakcio aŭ por transformi aliajn kemiajn substancojn.
Pli detalaj informoj troveblas en artikoloKemia reakcio.
Dum kemiaj reakcioj, la ligoj inter atomoj rompiĝas kaj formiĝas, rezulte en diferencaj substancoj kun diferencaj proprecoj. Enaltforno, fera oksido, nomekombinaĵo, reakcias kun karbona monoksido por formi feron, unu el lakemiaj elementoj, kaj karbonan dioksidon.
Kiam kemia substanco estas transformita kiel rezulto de sia interagado kun alia substanco aŭ kun energio, oni diras, ke kemia reakcio okazis.Kemia reakcio estas tiel koncepto rilata al la "reakcio" de substanco kiam ĝi venas en proksima kontakto kun alia, ĉu kiel mikso ĉu kielsolvaĵo; ekspono al iu formo de energio, aŭ ambaŭ. Ĝi rezultas en iu energia ŝanĝo inter la konstituantoj de la reakcio same kiel kun la medio de la sistemo, kio povas esti priskribita kiel vehikloj — ofte laboratoria vitrujaro.
Kemiaj reakcioj povas rezulti en la formado aŭ disasocio de molekuloj, tio estas, molekuloj disrompiĝas por formi du aŭ pliajn molekulojn aŭ rearanĝojn de atomoj ene aŭ tra molekuloj. Kemiaj reakcioj kutime postulas la faradon aŭ rompon de la kemiaj ligoj.Oksidigo, reduktado, disasocio, acid-baza neŭtraligo kaj molekula rearanĝo estas kelkaj el ofte uzataj tipoj de kemiaj reakcioj.
Kemia reakcio povas esti simbole priskribita pere dekemia ekvacio. Kvankam en ne-nuklea kemia reakcio la nombro kaj tipo de atomoj de ambaŭ flankoj de la ekvacio estas egalaj, por nuklea reakcio tio estas vera nur por la nukleaj partikloj, por ekzemplo, protonoj kaj neŭtronoj.[20]
La sekvenco de paŝoj en kiu la reorganizado de kemiaj ligiloj povas okazi en la daŭro de kemia reakcio estas nomata tiesmekanismo. Kemia reakcio povas esti konsiderata kiel okazanta laŭ nombraj ŝtupoj, ĉiuj el kiuj povas havi diferencan rapidon. Multaj intermezaj reakcioj kun variebla stabileco povas tiel esti rigardita dum la daŭro de la reakcio. Reakciaj mekanismoj estas proponitaj por klarigi lakinetikon kaj la relativan produktitan mikson de reakcio. Multajfizik-kemiistoj specializiĝas en la esplorado kaj proponado de mekanismoj de variaj kemiaj reakcioj. Kelkaj empiriaj reguloj, kiel la reguloj de Woodward–Hoffmann ofte estas uzataj por proponi mekanismon por kemia reakcio.
Laŭ la Ora Libro de laIUTAK, kemia reakcio estas "procezo kiu rezultas en la interkonverto de kemiaj specoj."[21] Laŭe, kemia reakcio povas esti elementa reakcio aŭ laŭŝtupa reakcio. Aldona averto inda en tiu difino estas ke interkonverto de konformaĵoj estas eksperimente observebla. Tiaj detekteblaj kemiaj reakcioj normale postulas arojn de molekulaj entoj kiel indikita de tiu difino, sed estas ofte koncepte konvena la uzado de tiu termino ankaŭ por ŝanĝoj de unusolaj molekulaj entoj (t.e. 'mikroskopaj kemiaj okazaĵoj').
Kontraste alneorganika kemio, kombinaĵojn organikajn oni ne povas priskribi simple per la kvanto da atomoj de ĉiuelemento en la kombinaĵo, ĉar povas ekzisti pluraj, iafoje multegaj organikaj molekuloj havantaj la samankemian formulon (do havantaj la saman kvanton de ĉiu elemento), sed kies la strukturo, la aranĝado de la atomoj estas malsamaj: tiuj do estas malsamaj molekuloj, kun malsamaj fizikaj kaj ĥemiaj ecoj kaj kondutoj. La diversaj molekuloj havantaj la saman krudan formulon estas nomatajizomeroj. Pro tio, oni devas ankaŭ priskribi la aranĝadon de la atomoj por esprimi nedusence apartan molekulon: tio estas, kiu atomo estas ligita al alia, kaj kiel (per kia ligaĵo). Plej ofte, speciale por pli komplikaj molekuloj, oni simple montras la strukturan formulon anstataŭ uzi nomon; tamen ekzistas ankaŭ ebleco nomi ĉiun molekulon laŭ la reguloj deIUPAC.Ekzistas pluraj aliaj sistemoj de molekul-struktura priskribo, meze de kiuj latopologia formulo kaj laĉeno SMILES.
Organometala ĥemio estas la studo deorganometalaj komponaĵoj,kemiaj kombinaĵoj kiu enhavas almenaŭ unu el lakemiaj ligoj inter atomo dekarbono de organa molekulo kajmetalo, inklude alkalajn, alkalajn teron kaj transirajn metalojn, kaj foje larĝiĝite por inkludi ankaŭ metaloidojn kiel boro, silico kajseleno.[22][23]