Geometrio (de lagrekajγης, "tero", kajμετρoς, "mezuro") estas branĉo dematematiko, kiu studas spacajn rilatojn (ekz. reciprokan situon), formojn (ekz. geometriajn korpojn), grandojn kaj relativan situon de figuroj kaj ilian ĝeneraligon. La naskiĝo de geometrio okazis en antikveco pro praktikaj bezonoj: mezurado de terpecoj, volumeno ktp.Geometro estas specialisto pri geometrio,[1] nome fakulo pri geometrio,matematikisto, kiu laboras en la kampo de geometrio.
Kvankam geometrio ege evoluis dum sia historio, kelkaj ĝeneralaj konceptoj de geometrio restas fundamentaj. Tiuj estas, ekzemple, la konceptojpunkto,rekto,ebeno,distanco,angulo,surfaco kajlinio, same kiel la pli modernaj nociojtopologio kajsternaĵo.[2]
Geometrio havas aplikojn en multaj fakoj, kielarto,arkitekturo,fiziko, same kiel al la aliaj branĉoj de matematiko.[3]
Geometrio stariĝis sendepende en nombraj fruaj kulturoj kiel korpuso de praktika sciaro koncerne allongoj,areoj, kajvolumenoj, kun elementoj de formalamatematika scienco aperanta en Okcidento tiom frue kiom ĝisTaleso de Mileto (6a jarcento a.K.). Poste la strikta konstruo de geometrio, kiel sistemo de asertoj (teoremo), konsekvence sinsekvaj el nemultaj difinoj de ĉefaj nocioj kaj veraĵoj, akceptitaj sen pruvo (aksiomo), estis donita en antikvaGrekio. Tia traktado de geometrio en la “Komencoj” deEŭklido (ĉ. 300 a.K.), dum preskaŭ 2 mil jaroj servis kiel modelo por aksioma metodo kaj baza konstruo de t.n. "Eŭklida geometrio" sekvota dum multaj jarcentoj.[4]Arkimedo disvolvigis ingeniajn teknikojn por la kalkulado de areoj kaj volumenoj, en multaj manieroj pionire de la modernaintegrala kalkulo. La fakoastronomio, ĉefe ĉar ĝi rilatas al mapado kaj al la situoj desteloj kajplanedoj en laĉielosfero kaj al priskribado de rilatoj inter movoj de ĉielaj korpoj, utilis kiel grava fonto de geometriaj problemoj dum la venontaj unu kaj duona jarmiloj. En la klasika mondo, kaj geometrio kaj astronomio esris konsiderataj parto deQuadrivium, subfako de la sepSep liberaj artoj konsideritaj esencaj por ke libera civitano mastru.
La reviviĝo de lascienco kajarto enEŭropo stimulis evoluon de geometrio, kies teoria bazo estis Projekta Geometrio.Kartezio (Rene Descartes) proponis metodon dekoordinatoj, kiu permesis interligi geometrion kunalgebro kaj matematika analizo, rezultanta naskon deanaliza geometrio kaj diferenciala geometrio. De tiam geometriaj figuroj kiaj ebenaj kurboj estos reprezentataj analize en la formo de funkcioj kaj ekvacioj, Tio ludis ŝlosilan rolon en la apero de lainfinitezima kalkulo en la 17a jarcento. Krome, la teorio deperspektivoj montris, ke estas pli al geometrio ol ĝuste la mezuraj propraĵoj de figuroj: perspektivo estas la origino deprojekcia geometrio. La subjekto de geometrio estis plue pliriĉigita per la studo de la esenca strukturo de geometriaj objektoj kiuj originiĝis ĉeEuler kajGauss kaj kondukis al la kreado de latopologio kaj de ladiferenciala geometrio.
En la epoko de Eŭklido, ne estis klara distingo inter fizika kaj geometriaspacoj. Ekde la 19a-jarcenta malkovro de ne-Eŭklida geometrio, la koncepto de spaco suferis radikalan transformadon kaj levigis la demandon pri kiu geometria spaco plej bone kongruus kun fizika spaco. En1826 N.Lobaĉevskij konstruishiperbolan geometrion, diferencantan de la eŭklida geometrio per la aksiomo priparaleloj. En la mezo de19-a jarcento estis esploritaj multmezuraj spacoj. Vasta fako de geometrio estis fondita en la verkoj deB. Riemann. La ĝeneraligo de la ĉefobjekto de geometrio -spaco, ebligis ĝian fruktodonan uzadon ne nur en matematikaj sciencoj, sed ankaŭ enfiziko,meĥaniko k.a.
Kun la apero de la formala matematiko en la 20a jarcento, 'spaco' (ĉu 'punkto', 'linio', aŭ 'surfaco') perds sian intuiciajn enhavojn, kaj tiele nuntempe oni devas distingi inter fizika spaco, geometriaj spacoj (en kiuj 'spaco', 'punkto' ktp., kiuj ankoraŭ havas sian intuiciajn signifojn) kaj abstraktaj spacoj. Nuntempa geometrio konsiderassternaĵojn, nom spacojn kiuj estas konsiderinde pli abstraktaj ol la familiaraEŭklida spaco, al kiu ili nur proksimume similas je malgrandaj skaloj. Tiuj spacoj povas esti dotitaj per aldona strukturo kiu permesas onin paroli pri longo. Moderna geometrio havas multaj ligojn alfiziko kiel estas ekzempligita de la ligoj inter la pseŭdo-Riemannian-a geometrio kaj laĝenerala teorio de relativeco. Unu el la plej novaj fizikaj teorioj, nome laKordoteorio, estas ankaŭ tre geometrieca.
Dum la vida naturo de geometrio faras ĝin dekomence pli alirebla ol aliaj matematikaj areoj kiaj algebro aŭNombroteorio, geometria lingvaĵo estas uzata ankaŭ en kuntekstoj tre foraj el sia tradicia eŭklida deveno (por ekzemplo, ĉefraktala geometrio kaj ĉealgebra geometrio).[5]
Eŭklido efektivigis abstraktan aliron al geometrio en sia verkoElementoj,[8] unu el la plej influaj libroj iam verkitaj.[9] Eŭklido bazis sian aliron sur kelkajaksiomoj (alinome:postulatoj) esprimantaj unuarangajn aŭ mem-evidentajn ecojn de punktoj, rektoj kaj ebenoj.[10] Li rigore deduktis aliajn proprecojn per matematika racieco. La karaktera trajto de la alproksimigo de Eŭklido al geometrio estis lia rigoro, kaj ĝi estis konata kielaksiomeca aŭsinteza geometrio.[11] Komence de la 19a jarcento, la malkovro de lane-Eŭklidaj geometrioj fare deNikolaj Lobaĉevskij (1792–1856),János Bolyai (1802–1860),Carl Friedrich Gauss (1777–1855) kaj aliaj[12] kondukis al revivigo de intereso en tiu fako, kaj en la 20a jarcento,David Hilbert (1862–1943) uzis aksioman raciecon en klopodo havigi modernan fundamenton de geometrio.[13]
Punktoj estas konsiderataj fundamentaj konceptoj en la Eŭklida geometrio. Ili estis difinitaj per vario de manieroj, kiel per la difino de Eŭklido kiel 'kio kio ne havas partojn'[14] kaj tra la uzado de algebro aŭ de nestoserioj.[15] En multaj areoj de geometrio, kiel en analiza geometrio, diferenciala geometrio, kaj topologio, ĉiuj objektoj estas konsiderataj konstruitaj el punktoj. Tamen, estis iome da studo de geometrio senreference al punktoj.[16]
Eŭklido priskribis rekton kiel "senspira longo" kiu "kuŝas egale kun rilato al la punktoj en si mem".[14] En moderna matematiko, havigita la multeco de geometrioj, la koncepto de rekto estas tre ligata al la maniero kiel la geometrio estas priskribita. Por ekzemplo, enanaliza geometrio, rekto en ebeno estas ofte difinita kiel la serio de punktoj kies koordinatoj kontentigas difinitanlinearan ekvacion,[17] sed en pli abstrakta konsidero, kiel en incida geometrio, rekto povas esti sendependa objekto, distingebla el la serio de punktoj kiuj kuŝas en ĝi.[18] Endiferenciala geometrio,geodezia kurbo estas ĝeneraligo de la nocio de rekto ĝiskurbaj spacoj.[19]
kieA, B, C - laŭvolajreelaj nombroj .Sed almenaŭ unu elA kajB ne estas nulo.
(x, y) - koordinatoj de punkto en rekto.
Vektoro[A, B] estas orta al rekto, kaj vektoro[-A, B] estas paralela al rekto.
Rimarku: unu rekto povas havi pli ol unu universala ekvacio. Sed koeficiento devas:. Ĉar oni sufiĉas ke universala ekvacio multiplikas de laŭvola ne nula nombro kaj estos alia ekvacio sed ĝi priskribos saman rekton.
Ebeno aŭ ebenaĵo estas ebena, du-dimensia surfaco kiu etendiĝas senfine for.[14] Ebenoj estas uzataj en ĉiu areo de geometrio. Por ekzemplo, ebenoj povas esti studataj kieltopologiaj surfacoj senreference al distancoj aŭ anguloj;[20] ili povas esti studataj kiel afina spaco, kie kunlineareco kaj proporcioj povas esti studataj sed ne distancoj;[21] ili povas esti studataj kielkompleksa ebeno uzante teknikojn dekompleksa analitiko;[22] kaj tiel plu.
Kiel laeŭklida spaco, ebeno estas tia spaco, kiu, estante du malsamaj punktoj, enhavas la unikan rekton, kiu trapasas tiujn punktojn. Ebeno kiu estas eŭklida spaco estas nomata kieleŭklida ebeno aŭ ℝ2.
La fundamenta strukturo de tiaj du ebenoj ĉiam estos la sama. En matematiko, tio estas topologia ekvivalento, kio signifas, ke ĉiuj ajn ebenoj ŝajnas egalaj. En eŭklida ebeno povas esti difinitakoordinatosistemo el du koordinatoj, kiu povas difini ĉiun punkton en la ebeno.Karteziaj koordinatoj estas plej kutime uzataj, ili tie havasabscison kajordinaton.
Eŭklido difinis ebenanangulon kiel la klino de unu al alia, en ebeno, de du rektoj kiuj kuniĝas unu al la alia, kaj ne kuŝas rekte rilate unu al la alia.[14] En modernaj terminoj, angulo estas la figuro formata de duradioj, nomataj laflankoj de la angulo, kiuj kunhavas komunan finpunkton, nomatavertico de la angulo.[23]
Akuta (a), obtuza (b), kaj rekta (c) anguloj. La akuta kaj obtuza anguloj estas konataj ankaŭ kiel oblikvaj anguloj.
Kurbo estas 1-dimensia objekto kiu povas esti durekta (kiel linio) aŭ ne; kurboj en 2-dimensia spaco estas nomataj ebenaj kurboj kaj tiuj en 3-dimensia spaco estas nomataj spacaj kurboj.[27]
En topologio, kurbo estas difinita per funkcio el intervalo de la reelaj nombroj al alia spaco.[20] En diferenciala geometrio, la sama difino estas uzata, sed oni postulas, ke la difinanta funkcio estu diferencialebla[28] Algebra geometrio studasalgebrajn kurbojn, kiuj estas difinitaj kielalgebraj variaĵoj de dimensio unu.[29]
Kompakta kurbo estassternaĵo dedimensio 1, alivorte kontinuumo en kiu por ĉiu ĝiapunkto, kaj laŭvola ĉirkaŭaĵo de ĉi tiu punkto ekzistas ia ĉirkaŭaĵo de punkto, kiu entenas en lastan, kiurando ne havas kontinuumon, kiu konsistas el ne pli ol unu punkto (ĉiaj punktoj havas laŭvolan ĉirkaŭaĵon kun 0-dimensia rando).
En elementa geometrio oni esploras rektan linion aŭrekton, detranĉojn de rekto, rompitan linion, kurban linion aŭkurbon. Ĉiu speco de linio estas determinita per speciala maniero, ekz.cirklo estas aro de tiuj punktoj, kiuj egale distancas de la donita punktoO". Oni nomas la punktonO -centro de la cirklo, kaj la distanconR -radiuso de la cirklo.
Areo kaj volumeno povas esti difinitaj kiel fundamentaj kvantoj aparte el longo, aŭ ili povas esti priskribitaj kaj kalculataj en terminoj de longoj en ebeno aŭ en 3-dimensia spaco.[32] Matematikistoj trovis multajn klarajnformulojn por areoj kajformulojn por volumeno de variaj geometriaj objektoj. Enkalkulo, areo kaj volumeno povas esti difinitaj en terminoj deintegraloj, kiel laRimana integralo[34] aŭ la Lebesga integralo.[35]
En diferenca direkto, la konceptoj de longo, areo kaj volumeno estas etenditaj pere de lamezurteorio, kiu studas metodojn atribui grandon aŭmezuron alaroj, kie la mezuroj sekvas regulojn similajn al tiu de klasikaj areo kaj volumeno.[38]
Kongruo kajsimileco estas konceptoj kiuj priskribas kiam du formoj havas similajn karakterojn.[39] En Eŭklida geometrio, simileco estas uzata por priskribi objektojn kiuj havas la saman formon, dum kongruo estas uzata por priskribi objektojn kiuj estas samaj kaj laŭ grando kaj laŭ formo.[40]Hilbert, en sia verko pri la kreado de pli rigora fundamenton por geometrio, traktis kongruon kiel nedifinita termino kies proprecoj estas difintaj peraksiomoj.
Kongruo kaj simileco estas ĝeneraligitaj entransforma geometrio, kiu studas la ecojn de geometriaj objektoj, kiuj estas konservataj per diferencaj tipoj de transformoj.[41]
Klasika geometrio dediĉis specialan atenton al konstruado de geometriaj objektoj kiuj esti priskribitaj alimaniere. Klasike, la nuraj instrumentoj permesitaj en geometria konstruado estas lacirkelo kaj larektilo. Krome, ĉia geometria konstruaĵo devas esti kompletigita en finhava nombro de ŝtupoj. Tamen, kelkaj problemoj rezultis malfacile aŭ maleble solveblaj per nur tiuj rimedoj, kaj oni trovis ingeniajn konstruojn uzanteparabolojn kaj aliajn kurbojn, same kiel meĥanikajn aparatojn. Vidu sube ĉapitronKlasikaj problemoj.
Kie la tradicia geometrio permesis dimensiojn 1 (rekto), 2 (ebeno) kaj 3 (la medio konceptita kielTri-dimensia spaco), matematikistoj kaj fizikistoj estis uzantaj pli altajn dimensiojn dum preskaŭ du jarcentoj.[42] Unu ekzemplo de matematika uzo por pli altaj dimensioj estas la formospaco de fizika sistemo, kiu havas dimension egalan al la liberecgradoj de la sistemo. Por ekzemplo, la formado deŝraŭbo povas estis priskribita per kvin koordinatoj.[43]
La temo desimetrio en geometrio estas preskaŭ tiom antikva kiom la scienco de geometrio mem.[46] Simetriaj fgormoj kiaj lacirklo, laregulaj plurlateroj kajplatonaj solidoj havis profundajn signifojn por multaj antikvaj filozofoj[47] kaj estis esploritaj detale antaŭ la tempo de Eŭklido.[10] Simetriaj modeloj ekzistas en lanaturo kaj estis arte ripetitaj de homoj en multaj formoj, kiel en la bildoj deda Vinci,M.C. Escher, kaj aliaj.[48] En la dua duono de la 19a jarcento, la rilato inter simetrio kaj geometrio venis al intensa pridemandado. La Erlangen programo deFelix Klein proklamis, ke en tre preciza senco, simetrio, esprimita per la nocio de transformagrupo, determinas tion, kio geometrioestas.[49] Simetrio en klasikaEŭklida geometrio estas reprezentata per kongruoj kaj rigidaj movoj, dum enprojekcia geometrio analoga rolo estas ludata per kunliniigoj,geometria transformado, kiu konvertas rektojn en rektojn.[50] Tamen estis en la novaj geometrioj de Bolyai kaj Lobaĉevskij, Riemann,Clifford kaj Klein, kajSophus Lie en kiuj la ideo de Klein por 'difini geometrion tra siasimetria grupo' trovis sian inspiron.[51] Kaj diskretaj kaj kontinuaj simetrioj ludas gravan rolon en geometrio, la unuaj entopologio kaj en la geometria grupoteorio,[52][53] kaj la lastaj en la teorio de Lie kaj en la geometrio deBernhard Riemann.[54][55]
Diferenca tipo de simetrio estas la principo de dueco enprojekcia geometrio, inter aliaj fakoj. Tiu meta-fenomenono povas iom estis priskribita jene: en ajnateoremo, ŝanĝipunkto alebeno,kunigi alkuniĝi,kuŝas en alenhavas, kaj la rezulto estas egale vera teoremo.[56] Simila kaj tre rilata formo de dueco ekzistas intervektora spaco kaj ties dueca spaco.[57]
Diferenciala geometrio estas la fako de geometrio, en kiu geometriaj figuroj determiniĝas surbaze de metodo de koordinatoj per la rimedoj de diferencialakalkulo. La origina objekto de diferenciala geometrio estis pristudo de geometriaj figuroj de ordinara 3-dimensia spaco (linio, surfaco). De la 2-a duono de 19-a jarcento, la kadroj de diferenciala geometrio grave plivastiĝis, inkludante ankaŭ esploron de multdimensia spaco. Diferenciala geometrio estas grava instrumento por esploroj en meĥaniko,teorio de relativeco, k.a.
Desegna geometrio estas la fako de geometrio, en kiu geometriaj figuroj determiniĝas per konstruo de iliaj bildoj sur projekciaj ebenoj. Kelkaj ideoj de desegna geometrio estis prilaboritaj en 16a-17a jarcentoj, sed kiel sendependa scienco ĝi formiĝis nur ĉe la fino de 18-a jarcento pere deGaspard Monge kaj pro la kreskantaj praktikaj bezonoj de inĝenierarto.
Sfera geometrio estas la fako de matematiko, kiu esploras figurojn sursfero. Evoluo de ĉi tiu branĉo en antikveco estis ligita kun la problemoj de sferaastronomio.
Kiel trionigi angulon? (angula trisekcado,d:Q733081)
Kiel krei kvadraton kiu havas la saman surfacon kiel difinita cirklo? (kvadratigo de la cirklo,d:Q193394)
Pli precize, en ĉiuj tri problemoj, la tasko estas establi geometrian konstrumanieron (ekz. por trionigi ajnan donitan angulon), uzante soleliniilon kajcirkelon. Pri ĉiuj tri problemoj okupiĝis jam la grekoj antaŭ pli ol dumil jaroj. Per lateorio de Galois pri aŭtomorfismoj de korpoj oni montras facile ke 1. kaj 2. ne allasas ĝeneralan solvon. Ankaŭ la 3-a problemo ne estas solvebla; por pruvi tion, oni bezonas aldone la teoremon de Lindemann pri latranscendeco de la nombropi.
↑Estas tre ofta ĉe algebra geometrio paroli prigeometrio de algebra varieco super finitaj kampoj, eble singulare. El naiva perspektivo, tiuj objektoj estas ĝuste finitaj serioj de punktoj, sed laŭ pova geometria imagaro kaj uzante bone disvolvigitajn geometriajn teknikojn, eblas trovi strukturon kaj statigi propraĵojn kiuj faras ilin iome analogaj al la ordinarajsferoj aŭkonusoj.
↑6,06,1Schmidt, W., Houang, R., & Cogan, L. (2002). "A coherent curriculum".American Educator, 26(2), 1–18.
↑20,020,120,220,3Munkres, James R. Topology. Vol. 2. Upper Saddle River: Prentice Hall, 2000.
↑Szmielew, Wanda. 'From affine to Euclidean geometry: An axiomatic approach.' Springer, 1983.
↑Ahlfors, Lars V.Complex analysis: an introduction to the theory of analytic functions of one complex variable. New York, London (1953).
↑Sidorov, L.A. (2001) [1994],"Angle", en Hazewinkel, Michiel (eld.), Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers,ISBN 978-1-55608-010-4 Alirita la 7an de junio 2020.
↑Gelʹfand, Izrailʹ Moiseevič, kaj Mark Saul. "Trigonometry." 'Trigonometry'. Birkhäuser Boston, 2001. 1–20.
↑Stewart, James (2012).Calculus: Early Transcendentals, 7th ed., Brooks Cole Cengage Learning.(ISBN 978-0-538-49790-9)
↑Jost, Jürgen (2002), Riemannian Geometry and Geometric Analysis, Berlin: Springer-Verlag, (ISBN 978-3-540-42627-1).
↑Baker, Henry Frederick. Principles of geometry. Vol. 2. CUP Archive, 1954.
↑28,028,128,2Do Carmo, Manfredo Perdigao, kaj Manfredo Perdigao Do Carmo. Differential geometry of curves and surfaces. Vol. 2. Englewood Cliffs: Prentice-hall, 1976.
↑29,029,1Mumford, David. (1999)The Red Book of Varieties and Schemes Includes the Michigan Lectures on Curves and Their Jacobians,2‑a eldono, Springer-Verlag.ISBN 978-3-540-63293-1.
↑Briggs, William L., kaj Lyle Cochran Calculus. "Early Transcendentals."(ISBN 978-0321570567).
↑Yau, Shing-Tung; Nadis, Steve (2010). The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions. Basic Books.(ISBN 978-0-465-02023-2).
Boyer, C. B.. (1991)A History of Mathematics. Nov-Jorko: Wiley.ISBN 0-471-54397-7.
Nikolai I. Lobachevsky,Pangeometry, tradukisto kaj eldonisto: A. Papadopoulos, Heritage of European Mathematics Series, Vol. 4, European Mathematical Society, 2010.