Movatterモバイル変換


[0]ホーム

URL:


Saltu al enhavo
Vikipedio
Serĉi

Artropodoj

El Vikipedio, la libera enciklopedio
Polurinda artikolo
Ĉi tiu artikolo bezonaspoluradon, ĉar ĝi montras stilajn kaj/aŭ gramatikajn kaj/aŭ strukturajn problemojn, kiuj ne konformas alstilogvido.
La priskribo de la problemo troviĝasĉi tie. Bonvoluŝanĝi la enhavon por plibonigi la artikolon.
Kiel legi la taksonomion
Kiel legi la taksonomion
Artropodoj

Formortintaj kaj modernaj artropodoj
Formortintaj kaj modernaj artropodoj
Biologia klasado
Regno:AnimalojAnimalia
Superfilumo:MudulojEcdysozoa
Filumo:ArtropodojArthropoda
Latreille, 1829
Subfilumoj kaj Klasoj
Aliaj Vikimediaj projektoj
vdr

Artropodojartikpieduloj,[1] (science:Arthropoda; el la grekaαρθρόποδα [arthropoda],arthro-, artiko +podos, piedo) estas subaro de laduflankuloj, kun taksonomia kategorio de filumo. Ili ne havasspinon, kaj havas ĝenerale malmolan ŝelon. Nome temas prisenvertebrajanimaloj kiuj havasekzoskeleton (eksteraskeleto), segmentan korpon kaj artikitajnmembrojn (parigitaj membroj). La filumo estas dividita en 5 subfilumojn:keliceratoj,heksapodoj,krustacoj,miriapodoj kaj †trilobuloj, kiuj inkluzivas proksimume 1,257,040speciojn.[2]

Artropodoj estas karakterizitaj per siaj artikitaj membroj kajkutiklo faritaj elĥitino, ofte mineraligita perkalcia karbonato. La artropoda korpoformo konsistas el segmentoj, kiu havas po paron demembroj. La rigida kutiklo malhelpas kreskon, kaj tiele artropodoj anstataŭigas ĝin periode pere demudo. Ties adapteblo permesis al ili iĝi la plej speci-riĉaj membroj de ĉiuj speciaroj en plejparto de la medioj. Ili havas ĉirkaŭ milionon da priskribitaj specioj, kio faras ĝin pli ol 80% el ĉiuj priskribitaj vivantaj bestospecioj, kelkaj el kiuj, malkiel plejparto de la animaloj, estas tre sukcesaj eĉ en sekegaj medioj.

Artropodoj gamas laŭ grando el la mikroskopakrustacoStygotantulus ĝis la Japana aranekrabo. La ĉefa interna kavaĵo de artropodoj estassangujo, kiu enhavas ties internajnorganojn, kaj tra kiu ties hemolimfo - similaĵo desango - cirkulas; ili havasmalfermajn cirkulajn sistemojn. Kiel ĉe ties eksteraĵoj, la internaj organoj de artropodoj estas ĝenerale konstruitaj de ripetaj segmentoj. Tiesnerva sistemo estas "ŝtupareca", kun parigitajventraj nervofadenoj kiuj iras tra ĉiuj segmentoj kaj formas parigitajngangliojn en ĉiu segmento. Ties kapoj estas formitaj per fuzio de variaj nombroj de segmentoj, kaj tiescerboj estas formitaj per fuzio de la ganglioj de tiuj segmentoj kaj ĉirkaŭas laezofagon. Laspira kajekskrecia sistemoj de artropodoj varias, depende multon de ilia medio kaj el la subfilumo al kiu ili apartenas.

Ties vidkapablo dependas de variaj kombinoj dekompleksaj okuloj kaj pigment-truajoceloj: ĉe plej multaj specioj la oceloj povas detekti nur la direkton el kiu lumo venas, kaj la kompleksaj okuloj estas la ĉefa fonto de informaro, sed la ĉefaj okuloj dearaneoj estas oceloj kiuj povas formi bildojn kaj, en kelkaj okazoj, povas turniĝi por vidokapti predon. Artropodoj havas ankaŭ ampleksajn gamojn de kemiaj kaj mekanikaj sensiloj, ĉefe bazitajn sur modifoj de multajĥetoj (haretaĵoj) kiuj projektas tra siaj kutikloj. La metodoj de reproduktado kaj disvolvigo de artropodoj estas diversaj; ĉiuj surteraj specioj uzas internan fekundigon, sed tio okazas ofte per nerekta transigo despermo tra membro aŭ la grundo, pli ol per rekta injekto. Akvaj specioj uzas ĉu internan aŭ eksteran fekundigon. Preskaŭ ĉiuj artropodoj demetasovojn, sedskorpioj naskas vivajn junulojn post kiam la idoj eloviĝis ene de la patrino. Artropodidoj varias de etegaj plenkreskuloj allarvoj kajraŭpoj kiuj ne havas artikitajn membrojn kaj finfine suferas totalanmetamorfozon por produkti la plenkreskan formon. La nivelo de patra zorgado por idoj varias de nenio al longdaŭra zorgado havigata deskorpioj.

La evolucia praulo de artropodoj datas el laKambria periodo. La grupo estas ĝenerale rigardata kielmonofiletika, kaj multaj analizoj eltenas la lokigon de artropodoj kuncycloneuralia (aŭ ties konstituantaj kladoj) en superfilumo demuduloj (Ecdysozoa). Ĝenerale tamen, labazaj rilatoj deMetazoa ne estas ankoraŭ bone solvitaj. Same, la rilatoj inter variaj artropodaj gropoj estas ankoraŭ aktive debatitaj.

Artropodoj kontribuas al la homa manĝaĵaro kaj rekte kiel manĝo, kaj pli grave kielpolenigantoj de plantoj, ĉefe tiuj gravaj poragrikulturobestobredado. Kelkaj specifaj specioj estas konataj ĉar disvastigas kelkajn malsanojn al homoj,gregaro kaj rikoltoj.

Etimologio

[redakti |redakti fonton]

La vortoartropodo derivas el lagrekaἄρθρονárthron, "artiko", kajπούςpous (gen.podos), t.e. "piedo" aŭ "kuro", kio kune signifas "artikita kruro".[3]

Priskribo

[redakti |redakti fonton]

Artropodoj estassenvertebruloj kun segmentitaj korpoj kaj artikitaj membroj.[4] Laekzoskeleto aŭ artropodajkutikloj konsistas elĥitino, nome polimero deglukozamino.[5] La kutiklo de krustacoj estas ankaŭ biomineraligita perkalcia karbonato.

Diverseco

[redakti |redakti fonton]

Ĉirkaŭkalkuloj de la nombro de artropodaj specioj varias inter 1,170,000 kaj 5 al 10 milionoj kaj tio estus ĉirkaŭ 80% el ĉiuj konataj vivantaj animalaj specioj.[6][7] La nombro de specioj restas malfacile determinebla. Tio okazas ĉar la censomodelo supozigas projekton al aliaj regionoj por skaligi el kalkuloj je specifaj lokoj aplikite al la tuta mondo. Studo de 1992 ĉirkaŭkalkulis ke estas 500,000 specioj de animaloj kaj plantoj nur en Kostariko, el kiuj 365,000 estus artropodoj.[8]

Ili estas gravaj membroj de maraj, nesalakvaj, teraj kaj aerajekosistemoj, kaj estas unu el nur du ĉefaj animalgrupoj, kiuj estis adaptiĝintaj al vivo en sekaj medioj; la alia estas laamniuloj, kies vivantaj membroj estasreptiloj,birdoj kajmamuloj.[9] Unu artropoda sub-grupo, nomeinsektoj, estas la plej speci-riĉa membro el ĉiuj ekologiaj gildoj en medioj surteraj kaj nesalakvaj.[8] La plej malpezaj insektoj pezas malpli ol 25 mikrogramoj (miliononoj de gramo),[10] dum la plej peza pezas ĉirkaŭ 70 g.[11] Kelkaj vivantajkrustacoj estas multe pli grandaj; ekzemple, la kruroj de la Japana aranekrabo povas etendi ĝis 4 m,[10] kaj la plej peza el ĉiuj vivantaj artropodoj estas la Amerikaomaro, pinte je ĉirkaŭ 20 kg (44 p.).

Segmentado

[redakti |redakti fonton]
Segmentoj kajtagmata de artropodo.[12] Klare videblas kapo, torako kaj abdomeno, kun finajcerkoj.

Laembrioj de ĉiuj artropodoj estas segmentataj, konstruite el serio de ripetitaj moduloj. Lalasta komuna praulo de vivantaj artropodoj probable konsistis el serio de nediferencataj segmentoj, el kiuj ĉiuj kun paro da apendicoj, kiuj funkcias kiel membroj. Tamen, ĉiuj konataj vivantaj kaj fosiliaj artropodoj havas grupigitajn segmentojn entagmoj, en kiuj segmentoj kaj ties membroj estas specializitaj en variaj vojoj.[9]

La tri-parta aspekto de multajinsekto-korpoj kaj la du-parta aspekto dearaneoj estas rezulto de tiu grupigo;[13] fakte ne estas eksteraj signoj de segmentado enakaroj.[9] Artropodoj havas ankaŭ du korpelementojn, kiuj ne estas parto de tiu serie ripetita modelo de segmentoj, nomeprostomium ĉe la fronto, antaŭ la buŝo, kajtelson malantaŭe, fakte malantaŭ laanuso. La okuloj estas muntitaj sur laprostomium.[9]

Origine ŝajnas ke ĉiu apendico, kiu havas segmentojn, havas du apartajn parojn da membroj; kaj supra kaj malsupra paro. Tiuj poste fuziiĝis en unusola paro de dubranĉaj apendizoj, el kiuj la supra branĉo agadas kielbranko dum la malsupra branĉo estas uzata por translokigo.[14] Ĉe kelkaj segmentoj de ĉiuj konataj artropodoj la apendizoj estis modifitaj, por ekzemplo por formi brankojn, buŝo-partojn,antenojn por kolekti informaron,[13] aŭ ungojn por kaptado;[15] artropodoj estas "kvazaŭsvisarmeaj tranĉiloj, ĉiu ekuipita per unika aro de specializitaj iloj."[9] Ĉe multaj artropodoj, apendicoj vanuis el kelkaj regionoj de la korpo, kaj estas partikulare ofta ĉe abdomenaj apendicoj ke ili estas malaperintaj aŭ tre modifitaj.[9]

La plej rimarkinda specializiĝo de segmentoj estas en la kapo. La kvar ĉefaj grupoj de artropodoj – nomekelikeruloj (inkludasaraneojn kajskorpiojn),krustuloj (salikokoj,omaroj,kraboj, ktp.),traĥeuloj (artropodoj, kiuj spiras tra kanaloj en siaj korpoj; inkludeinsektojn kajmiriapodojn), kaj la formortintajtrilobitoj – havas kapojn formitajn el variaj kombinoj de segmentoj, kun apendicoj, kiuj estas perditaj aŭ specialigitaj laŭ diversaj vojoj.[9] Aldone kelkaj formortintaj artropodoj, kiajMarrella, apartenas al neniu el tiuj grupoj, ĉar ties kapoj estas formataj de siaj propraj partikularaj kombinoj de segmentoj kaj specializitaj apendicoj.[16]

Prilabori la evoluciajn stadiojn, laŭ kiuj ĉiuj tiuj diversaj kombinoj povus esti aperintaj, estas tiom malfacile, ke tiu ĉi fenomeno estas delonge konata kiel "laartropodkapa problemo".[17] En 1960 R. E. Snodgrass eĉ montris deziron ke ĝi ne estu solvita, ĉar klopodi prilabori solvojn estis multe pli amuza.[18]

Ekzoskeleto

[redakti |redakti fonton]
Forlasita ekzoskeleto denimfo delibelo

Artropodajekzoskeletoj estas formataj de kutiklo, ne-ĉela materialo sekreciata de la epidermo.[12] Ties kutikloj varis en la detaloj de ties strukturo, sed ĝenerale konsistas el tri ĉefaj tavoloj: nome epikutiklo, fajna eksteravakseca mantelo, kiu defendas kontraŭ malsekeco la aliajn tavolojn kaj havigas krome iom da protekto; la eksokutiklo, kiu konsistas elĥitino kaj kemie plifortigitajproteinoj; kaj la endokutiklo, kiu konsistas el ĥitino kaj nefortigitaj proteinoj. La eksokutiklo kaj endokutiklo kune estas konataj kiel prokutiklo.[19] Ĉiu korposegmento kaj membroparto estas enskatoligita en fortigita kutiklo. La kuniĝoj inter korposegmentoj kaj inter membropartoj estas kovritaj de fleksebla kutiklo.[12]

La ekzoskeleto de plej akvajkrustuloj estas biomineraligitaj perkalcia karbonato elprenita el akvo. Kelkaj surteraj krustacoj estis disvolvigintaj rimedojn por stoki la mineralon, ĉar surtere ili ne povas dependi el preta havigo de solvita kalcia karbonato.[20] Biomineraligo ĝenerale tuŝas la eksokutiklon kaj la eksteran parton de la endokutiklo.[19] Du ĵusaj hipotezoj pri la evoluo de biomineraligo en artropodoj kaj aliaj grupoj de animaloj proponas ke ĝi havigas pli fortan defendan armaĵon,[21] kaj ke ĝi ebligas al animaloj kreskiĝi pli grande kaj pli forte havigante al ili pli rigidajn skeletojn;[22] kaj ajnaokaze mineral-organike komponita ekzoskeleto estas pli malmultekosta konstruebla ol tut-organika ekzoskeleto de komparebla forto.[23][24]

La kutiklo povas haviĥetojn (haregoj), kiuj kreskiĝas el specialaj ĉeloj en la epidermo. Ĥetoj estas variaj laŭ formo kaj funkcio kiel apendicoj. Por ekzemplo, ili estas ofte uzataj kiel sentiloj por detekti aeron aŭ akvofluojn, aŭ kontakton kun objektoj; akvaj artropodoj uzas plumecajn ĥetojn por pliigi la surfacan areon de naĝ-apendicoj kaj por filtri manĝerojn el la akvo; akvaj insektoj, kiuj estas aer-spirantoj, uzas dikajn mantelojn el ĥetoj por kapti aeron, etendante la tempon, kiun ili povas pasigi subakve; fortaj, rigidaj ĥetoj utilas kiel defendaj spinoj.[12]

Kvankam ĉiuj artropodoj uzas muskolojn ligitajn al la interno de ekzoskeleto por fleksi siajn membrojn, kelkaj ankoraŭ uzas hidraŭlikan premon por etendi ilin, nome sistemo heredita el ties pra-artropodaj prauloj;[25] por ekzemplo, ĉiuj araneoj etendas siajn krurojn hidraŭlike kaj povas generi premojn de ĝis ok fojoj ties ripoza nivelo.[26]

Mudo

[redakti |redakti fonton]
Cikado forgrimpante el sia ekzoskeleto ankoraŭ ligita al la arbo.

La ekzoskeleto ne povas etendiĝi kaj tiele limigas kreskon. Artropodoj tiele anstataŭas sian ekzoskeleton pere de mudo, aŭ forigo de la malnova ekzoskeleto post kresko de nova skeleto kiu ne estas ankoraŭ plifortigita. Mudocikloj povas okazi flue preskaŭ kontinue ĝis la artropodo atingas plenan grandon.[27]

En la komenca fazo de mudo, la animalo ĉesas manĝi kaj ties epidermo liverigas mudofluaĵon, nome mikso deenzimoj, kiuj digestas la endokutiklon, kaj tiele forigas la malnovan kutiklon. Tiu fazo ekas kiam la epidermo estis sekreciinta novan epikutiklon por protekti ĝin el la enzimoj, kaj la epidermo sekrecias la novan eksokutiklon dum la malnova kutiklo estas forigata. Kiam tiu stadio estas kompleta, la animalo faras ke sia korpo ŝvelas prenante grandan kvanton da akvo aŭ aero, kaj tio faras ke la malnova kutiklo disiĝas laŭlonge de antaŭdifinita malfortejo kie la malnova eksokutiklo estas pli fajna. Plej ofte tio bezonas kelkajn minutojn por ke la animalo elŝoviĝas el la malnova kutiklo. Je tiu punkto la nova estas elĉerpita kaj tiom milda ke la animalo ne povas subteni sin kaj malfacile moveblas, kaj la nova endokutiklo ankoraŭ ne estis formata. La animalo plue pligrandigas sin por etendi la novan kutiklon tiom multe kiom eblas, poste plifortigas la novan eksokutiklon kaj forigas la troan aeron aŭ akvon. Fine de tiu fazo la nova endokutiklo estis formita. Multaj artropodoj tiam manĝas la forigitan kutiklon por rekuperi ties materialojn.[27]

Ĉar artropodoj estas neprotektitaj kaj preskaŭ senmovigitaj ĝis la nova kutiklo estas plifortigita, ili estas en danĝero ĉar povas esti kaptitaj en la malnova kutiklo kaj povas esti atakita de predantoj. Mudo povas esti tialo de 80 al 90% de ĉiuj mortoj de artropodoj.[27]

Internaj organoj

[redakti |redakti fonton]

Artropodaj korpoj estas segmentataj ankaŭ interne, kaj la nerva, muskola, cirkula, kaj ekskreta sistemoj havas ripetajn komponantojn.[9] Artropodoj venas el stirpo de animaloj, kiuj havascelomon, nome membran-linia kavaĵo inter la ventro kaj la korpomuro, kiu protektas la internajn organojn. La fortaj, segmentataj membroj de artropodoj nuligas la neceson de unu el la ĉefaj praaj funkcioj de la celomo, kiel hidrostata skeleto, kiun la muskoloj premas por ŝanĝi la formon de la animalo kaj tiele ebligi ĝin moviĝi. El tio la celomo de la artropodo estas limigita al malgrandaj areoj ĉirkaŭ la reprodukta kaj ekskreta sistemoj. Ties loko estas tre okupita de hemocelo, nome kavaĵo, kiu etendiĝas pleje el la longo de la korpo kaj tra kiu lasango fluas.[28]

Centpiedulo.

Artropodoj havas malfermajncirkulajn sistemojn, kvankam plej havas kelkajn mallongajn, malferm-finajnarteriojn. Ĉe keliceruloj kaj krustacoj, la sango portasoksigenon al la histoj, dumheksapodoj uzas separatan sistemon detraĥeoj. Multaj krustacoj, sed malmultaj keliceruloj kajtraĥeuloj, uzas spiran pigmenton por helpi la transporton de oksigeno. La plej ofta spira pigmento ĉe artropodoj estaskupro-bazitahemocianino; tiu estas uzata de multaj krustacoj kaj kelkajcentpieduloj. Kelkaj krustacoj kaj insektoj uzas fer-bazitanhemoglobinon, nome la spira pigmento uzata devertebruloj. Kiel ĉe aliaj senvertebruloj, la spiraj pigmentoj de tiuj artropodoj, kiuj havas ilin, estas ĝenerale dissolvitaj en la sango kaj rare enfermitaj enkorpuskloj kiel ili estas en vertebruloj.[28]

La koro estas tipe muskola tubo, kiu etendiĝas ĝuste sub la dorso kaj el la longo de hemocelo. Ĝi kuntiriĝas laŭ ondoj, kiuj iras de malantaŭe antaŭen, pelante sangon antaŭen. Sekcioj, kiuj ne estas premitaj de la kormuskolo, estas etenditaj, ĉu de elastaj ligamentoj aŭ de malgrandaj muskoloj, ĉiam konektante la koron al la korpomuro. Laŭlonge de la koro estas serio de parajostia, nome ne-revenaj valvoj, kiuj ebligas ke la sango eniru al la koro sed evitas ke ĝi eliru antaŭ ol ĝi atingas la antaŭon.[28]

Artropodoj havas ampleksan varion de spiraj sistemoj. Malgrandaj specioj ofte ne havas tion, ĉar ties alta proporcio de surfaca areo al volum ebligas simplan disvastigon tra la korpa surfaco por havigi sufiĉan oksigenon. Krustacoj kutime havas brankojn, kiuj estas modifitaj apendicoj. Multaj araknidoj havasfolipulmojn.[29] Traĥeoj, sistemoj de brankaj tuneloj el la malfermaĵoj de la korpomuroj, liveras oksigenon rekte al la unuopaj ĉeloj ĉe multaj insektoj, miriapodoj kajaraknidoj.[30]

Vivantaj artropodoj havas parajn ĉefe nervajn ĥordojn laŭlonge de siaj korpoj sub la ventro, kaj en ĉiu segmento la ĥordoj formas paron deganglioj, el kiuj lasensaj kaj movaj nervoj estas ĉe aliaj partoj de la segmento. Kvankam la paroj de ganglioj en ĉiu segmento ofte aperas fizike fuziitaj, ili estas konektitaj pere dekomisuroj (nome relative grandaj faskoj da nervoj), kiuj donas al la artropoda nervosistemoj karakterajn "ŝtuparecan" aspekton. La cerbo estas en la kapo, encirklante kaj ĉefesuper laezofago. Ĝi konsistas el fuziitaj ganglioj de laprostomium kaj unu aŭ du el la plej antaŭaj segmentoj, kiuj formas la kapon – totalo de tri paroj de ganglioj ĉe plej artropodoj, sed nur du ĉe keliceruloj, kiuj ne havas antenojn aŭ la ganglion konektita el ili. La ganglio de aliaj kaposegmentoj estas ofte proksima al la cerbo kaj funkcias kiel ties parto. Ĉe insektoj tiuj aliaj kapoganglioj kombinas en unu paro de subezofagaj ganglioj, sub kaj malantaŭ la ezofago. Araneoj faras tiun procezon iom plue, ĉarĉiuj la segmentaj ganglioj estas aligitaj en la subezofagaj ganglioj, kiuj okupas plej el la spaco en la cefalotorako (antaŭa "super-segmento").[31]

Estas du diferencaj tipoj de artropodaj ekskretaj sistemoj. En akvaj artropodoj, la fina produkto de biokemiaj reagoj, kiujmetabolasnitrogenon, estasamoniako, kiu estas tiom venena ke ĝi bezonas esti solvita en akvo tiom multe kiom eblas. La amoniako estas tiam forigita tra iu permeabla membrano, ĉefe tra la brankoj.[29] Ĉiuj krustacoj uzas tiun sistemon, kaj ties alta konsumo de akvo povas esti la kialo de la relativa manko de sukceso de krustacoj kiel surteraj animaloj.[32] Variaj grupoj de surteraj artropodoj sendepende disvolvigis diferencan sistemon: la fina produkto de nitrogena metabolo estasureata acido, kiu povas esti ekskreciata kiel seka materialo; laMalpiga tubo filtras la ureatan acidon kaj alian nitrogenan forĵetaĵon ekster la sango en la hemocelon, kaj oni forigas tiujn materialojn en la malantaŭan inteston, el kiu ili estas elpelitaj kielfekaĵo.[32] Plej akvaj artropodoj kaj kelkaj surteremaj havas ankaŭ organojn nomenefridioj ("malgrandajrenoj"), kiuj elprenas aliajn forĵetaĵojn por ekskretado kielurino.[32]

Sensoj

[redakti |redakti fonton]

Vidkapablo

[redakti |redakti fonton]

La rigidajkutikloj de artropodoj forblokigus informaron pri la ekstera mondo, escepte ke ili estas penetrataj de multaj sensiloj aŭ konektiloj el sensiloj al la nervosistemo. Fakte, artropodoj havas modifitajn kutiklojn en prilaboritaj radioj de sensiloj. Variaj tuŝosensiloj, ĉefeĥetoj, rilatas al diferencaj niveloj de forto, el forta kontakto al tre malfortaj aerfluoj. Kemiaj sensiloj havigas ekvivalentojn degusto kajflaro, ofte pere de ĥetoj. Premosensiloj ofte havas la formon de membranoj, kiuj funkcias kielmiringoj, sed estas konektitaj rekte al nervoj pli ol al la orelostetoj. Laantenoj de plej heksapodoj inkludas sensilarojn, kiuj monitorashumidecon, humidecon kaj temperaturon.[33]

Saltaraneo vidita enĈenajo.

Plej artropodoj havas kompleksajn vidsistemojn, kiuj inkluzivas unu aŭ pli ofte ambaŭ elkomponitaj okuloj kaj simplajn pigmentotasajnokulojn ("okuletoj"). Plej ofteocelli estas kapablaj nur detekti la direkton, el kiu venas la lumo, uzante la ombron ĉe la tasomuroj. Tamen, la okuloj dearaneoj estas pigmentotasajocelli, kiuj estas kapablaj formi bildojn,[33] kaj tiuj desaltaraneoj povas turniĝi por kapti predon.[34]

Komponitaj okuloj konsistas el dekkvin al kelkaj miloj da sendependajommatidia, kolonoj, kiuj estas kutimeseslateraj ensekco. Ĉiuommatidium estas sendependa sensilo, kun siaj propraj lum-sensivaj ĉeloj kaj ofte kun siaj proprajokullensoj kajkorneoj.[33] Komponitaj okuloj havas ampleksan vidkampon, kaj povas detekti rapidajn movojn kaj foje lalumpolarizadon.[35] Aliflanke, la relativa grando deommatidia faras la bildojn iom fuŝaj, kaj komponitaj okuloj estas pli mallongaj - kompare kun tiuj de birdoj kaj mamuloj – kvankam tiu ne estas akra malavantaĝo, ĉar objektoj kaj okazoj ene de 20 centimetroj estas plej gravaj por plej artropodoj.[33] Kelkaj artropodoj havas koloran vidkapablon, kaj tiu de kelkaj insektoj estis studita detale; por ekzemplo, laommatidia deabeloj enhavas ricevilojn por kaj verda kajultraviola.[33]

Plej artropodoj ne havas sensilojn por ekvilibro kajakcelo, kaj dependas el siaj okuloj por diri al ili kien iri. La memfida konduto deblatoj estas ŝaltita kiam premosensiloj en la suba flanko de la piedoj ne informas premon. Tamen, multajmalakostrakajkrustacoj havas statocistojn, kiuj havigas la saman specon de informaro kiel la ekvilibraj kaj movajn sensilojn de la vertebrulainterna orelo.[33]

Laproprioceptoj de artropodoj, nome sensiloj, kiuj informas pri la forto plenumita de muskoloj kaj pri la grado kliniĝi en la korpo kaj artikloj, estas bone komprenitaj. Tamen oni scias malmulte pri tio, kiujn aliajn internajn sensilojn artropodoj povas havi.[33]

Flarkapablo

[redakti |redakti fonton]
Flanka vido de kapo montranta karakterajn harbridojn super la okulo.

Insekta flarkapablo referencas al la funkcio de ĥemiaj riceviloj, kiuj ebligas, keinsektojn detektu kaj identigu volatilajn komponaĵojn pormanĝado, predevito, trovado de partneroj porpariĝado (pere deferomonoj) kaj lokado de habitatoj porovodemetado.[36] Tiele, ĝi estas la plej grava senso por insektoj.[36] Plej gravaj insektokondutoj devas esti tempigitaj perfekte kio estas dependa el tio kion ili flaras kaj el kiam ili flaras ĝin.[37] Por ekzemplo flarado estas esenca por ĉasado ĉe multaj specioj devespoj, inkludePolybia sericea.

La du organoj, kiujn insektoj ĉefe uzas por detekti odorojn, estas laantenoj kaj specializitaj buŝopartoj nome makzelaj palpiloj.[38] Ene de tiuj flaraj organoj estas neŭronoj nome flar-ricevaj neŭronoj, kiuj, kiel la nomo sugestas, estas hejmoriceviloj por odoraj molekuloj en ties ĉelmembranoj. La majoritato de flar-ricevaj neŭronoj tipe kuŝas en laantenoj. Tiuj neŭronoj povas esti tre abundaj, por ekzemplo muŝoj de la genroDrosophila havas ĉirkaŭ 2,600 flar-ricevaj neŭronoj.[38]

Insektoj estas kapablaj flari kaj diferenci inter miloj da volatilaj komponaĵoj kaj sensive kaj selektive.[36][39]

Klasiga skemo

[redakti |redakti fonton]
                     ______Heksapodoj (insektoj,dipluroj,proturoj,kolemboloj)           _________/          /         \______Krustacoj (= krustuloj; kraboj, langustoj, saliketo, ktp)         /        /               ___Paŭropodoj       /               /      /               /____Diplopodoj (milpieduloj)     /____Miriapodoj_/    /                \_____Kilopodoj (centpieduloj)   /                  \ __/                    \___Simfiloj  \     \                   _____Araneoidoj (araneoj,akaroj,skorpioj, ktp)    \                 /     \___Ĥeliceruloj_/______Merostomoj                     \                       \_____Piknogonidoj

Galerio

[redakti |redakti fonton]

Referencoj

[redakti |redakti fonton]
  1. LaN.B.N.-nomo estas *Abelfilumanoj*
  2. Catalogue of Life (angle) (HTML). ITIS (2019). Arkivita ella originalo je 2019-06-22. Alirita 2019-06-22 .
  3. Arthropoda. Online Etymology Dictionary.
  4. Valentine, J. W. (2004), On the Origin of Phyla, University of Chicago Press, p. 33, (ISBN 0-226-84548-6), https://books.google.com/?id=DMBkmHm5fe4C&dq=arthropod+synapomorphy 
  5. Cutler, B. (Aŭgusto 1980), "Arthropod cuticle features and arthropod monophyly", Cellular and Molecular Life Sciences 36 (8): 953, doi:10.1007/BF01953812 
  6. Anna Thanukos, The Arthropod Story, University of California, Berkeley, http://evolution.berkeley.edu/evolibrary/article/arthropodstory, retrieved 29a de Septembro, 2008 
  7. Ødegaard, Frode (2000), "How many species of arthropods? Erwin’s estimate revised.", Biological Journal of the Linnean Society 71 (4): 583–597, doi:10.1006/bijl.2000.0468, archived fromthe original on 2010-12-26, https://web.archive.org/web/20101226022738/http://si-pddr.si.edu/dspace/bitstream/10088/1315/1/Odegaard_2000.pdf, retrieved 2016-05-23 
  8. 8,08,1Thompson, J. N. (1994), The Coevolutionary Process, University of Chicago Press, p. 9, (ISBN 0-226-79760-0), https://books.google.com/?id=AyXPQzEwqPIC&pg=PA9&lpg=PA9&dq=arthropod+species+number 
  9. 9,09,19,29,39,49,59,69,7Ruppert, Fox & Barnes (2004), pp. 518–522
  10. 10,010,1Schmidt-Nielsen, K. (1984), "The strength of bones and skeletons", Scaling: Why is Animal Size So Important?, Cambridge University Press, pp. 42–55, (ISBN 0-521-31987-0), https://books.google.com/?id=8WkjD3L_avQC&pg=PA53&dq=arthropod+size+range 
  11. Williams, D.M. (21a de Aprilo, 2001), "Largest", Book of Insect Records (Universitato de Florido), http://entnemdept.ufl.edu/walker/ufbir/chapters/chapter_30.shtml, retrieved 10a de Junio, 2009 
  12. 12,012,112,212,3Ruppert, Fox & Barnes (2004), pp. 518–522
  13. 13,013,1Gould (1990), pp. 102–106
  14. Giant sea creature hints at early arthropod evolution.
  15. Shubin, N.; Tabin, C.; Carroll, S. (2000), "Fossils, Genes and the Evolution of Animal Limbs", in Gee, H., Shaking the Tree: Readings from Nature in the History of Life, University of Chicago Press, p. 110, (ISBN 0-226-28497-2), https://books.google.com/?id=M6yF0pU4eCsC&pg=PA110&dq=arthropod+diversity 
  16. Whittington, H. B. (1971), "Redescription ofMarrella splendens (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia", Geological Survey of Canada Bulletin 209: 1–24  Resume enGould (1990), pp. 107–121.
  17. Budd, G. E. (16-a de majo2002), "A palaeontological solution to the arthropod head problem", Nature 417 (6886): 271–275, doi:10.1038/417271a, PMID 12015599, http://www.nature.com/nature/journal/v417/n6886/full/417271a.html 
  18. "It would be too bad if the question of head segmentation ever should be finally settled; it has been for so long such fertile ground for theorizing that arthropodists would miss it as a field for mental exercise."Snodgrass, R. E. (1960), "Facts and theories concerning the insect head", Smithsonian Miscellaneous Collections 142: 1–61 
  19. 19,019,1Wainwright, S. A.; Biggs, W. D. & Gosline, J. M. (1982), Mechanical Design in Organisms, Princeton University Press, pp. 162–163,ISBN 0-691-08308-8
  20. Lowenstam, H. A. & Weiner, S. (1989), On biomineralization, Oxford University Press, p. 111,ISBN 0-19-504977-2[1] alirita la 23an de Majo 2017.
  21. Dzik, J (2007), "The Verdun Syndrome: simultaneous origin of protective armour and infaunal shelters at the Precambrian–Cambrian transition", in Vickers-Rich, Patricia; Komarower, Patricia, The Rise and Fall of the Ediacaran Biota (PDF), Special publications, 286, London: Geological Society, pp. 405–414, doi:10.1144/SP286.30,ISBN 9781862392335, OCLC 156823511[2]Arkivigite je 2008-10-03 per la retarkivoWayback Machine Alirita la 23an de Majo 2017.
  22. Cohen, B. L. (2005), "Not armour, but biomechanics, ecological opportunity and increased fecundity as keys to the origin and expansion of the mineralized benthic metazoan fauna" (PDF), Biological Journal of the Linnean Society, 85 (4): 483–490, doi:10.1111/j.1095-8312.2005.00507.x[3] Alirita la 23an de Majo 2017.
  23. Cohen.
  24. Bengtson, S. (2004), Lipps, J. H.; Waggoner, B. M., eds., "Neoproterozoic–Cambrian Biological Revolutions" (PDF), Paleontological Society Papers, 10: 67–78[4]Arkivigite je 2017-02-11 per la retarkivoWayback Machine Alirita la 23an de Majo 2017.
  25. Barnes, R. S. K.; Calow, P.; Olive, P.; Golding, D. & Spicer, J. (2001), "Invertebrates with Legs: the Arthropods and Similar Groups", The Invertebrates: A Synthesis, Blackwell Publishing, p. 168,ISBN 0-632-04761-5[5] Alirita la 23an de Majo 2017.
  26. Parry, D. A. & Brown, R. H. J. (1959), "The hydraulic mechanism of the spider leg" (PDF), Journal of Experimental Biology, 36 (2): 423–433[6] Alirita la 23an de Majo 2017.
  27. 27,027,127,2Ruppert, Fox & Barnes (2004), pp. 523–524
  28. 28,028,128,2Ruppert, Fox & Barnes (2004), pp. 527–528
  29. 29,029,1 (2011) “Early terrestrial animals, evolution and uncertainty”,Evolution, Education, and Outreach 4 (3),p. 489–501.doi:10.1007/s12052-011-0357-y. 
  30. Ruppert, Fox & Barnes (2004), pp. 530, 733
  31. Ruppert, Fox & Barnes (2004), pp. 531–532
  32. 32,032,132,2Ruppert, Fox & Barnes (2004), pp. 529–530
  33. 33,033,133,233,333,433,533,6Ruppert, Fox & Barnes (2004), pp. 532–537
  34. Ruppert, Fox & Barnes (2004), pp. 578–580
  35. Völkel, R.; Eisner, M.; Weible, K. J. (Junio 2003), "Miniaturized imaging systems" (PDF), Microelectronic Engineering 67–68: 461–472, doi:10.1016/S0167-9317(03)00102-3, archived fromthe original on 2012-02-05, https://web.archive.org/web/20120205205823/http://www.suss-microoptics.com/downloads/Publications/Miniaturized_Imaging_Systems.pdf, retrieved 2017-05-24  Arkivita kopio. Arkivita ella originalo je 2008-10-01. Alirita 2017-05-24 .
  36. 36,036,136,2 “Towards an understanding of the structural basis for insect olfaction by odorant receptors”,Insect Biochemistry and Molecular Biology 66,p. 31–41.doi:10.1016/j.ibmb.2015.09.010. 
  37. (2016) “Plasticity in Insect Olfaction: To Smell or Not to Smell?”,The Annual Review of Entomology 61,p. 317–333.doi:10.1146/annurev-ento-010715-023523. 
  38. 38,038,1 (2015) “Aversion and Attraction through Olfaction”,Current Biology 25,p. R120–R1209.doi:10.1016/j.cub.2014.11.044. 
  39. (2015) “Chemical ecology and olfaction in arthropod vectors of diseases”,Current Opinion in Insect Science 10,p. 83–89.doi:10.1016/j.cois.2015.04.011. 

Literaturo

[redakti |redakti fonton]
  • Gould, S. J. (1990), Wonderful Life: The Burgess Shale and the Nature of History, Hutchinson Radius,ISBN 0-09-174271-4
  • Ruppert, E. E.; R. S. Fox; R. D. Barnes (2004), Invertebrate Zoology (7a eld.), Brooks/Cole,ISBN 0-03-025982-7

Vidu ankaŭ

[redakti |redakti fonton]

Eksteraj ligiloj

[redakti |redakti fonton]
Portala ikonoPortalo pri Biologio
Portala ikonoPortalo pri Zoologio

Tiu ĉi artikolo apartenas al la aro de la mil plej gravaj artikoloj
Bibliotekoj
Elŝutita el "https://eo.wikipedia.org/w/index.php?title=Artropodoj&oldid=9263265"
Kategorioj:
Kaŝitaj kategorioj:

[8]ページ先頭

©2009-2026 Movatter.jp