Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Sphalerite

From Wikipedia, the free encyclopedia
(Redirected fromZinc blende)
Zinc-iron sulfide mineral
"Zincblende" redirects here. For crystal structure, seeZincblende (crystal structure).

Sphalerite
Black crystals of sphalerite with minorchalcopyrite andcalcite
General
CategorySulfide mineral
Formula(Zn,Fe)S
IMA symbolSp[1]
Strunz classification2.CB.05a
Dana classification02.08.02.01
Crystal systemCubic
Crystal classHextetrahedral (43m)
H-M symbol: (4 3m)
Space groupF43m (No. 216)
Unit cella = 5.406 Å; Z = 4
Structure
Jmol(3D)Interactive image
Identification
ColorLight to dark brown, red-brown, yellow, red, green, light blue, black and colourless.
Crystal habitEuhedral crystals – occurs as well-formed crystals showing good external form. Granular – generally occurs as anhedral to subhedral crystals in matrix.
TwinningSimple contact twins or complex lamellar forms, twin axis [111]
Cleavageperfect dodecahedral on [011]
FractureUneven to conchoidal
Mohs scale hardness3.5–4
LusterAdamantine, resinous, greasy
Streakbrownish white, pale yellow
DiaphaneityTransparent to translucent, opaque when iron-rich
Specific gravity3.9–4.2
Optical propertiesIsotropic
Refractive indexnα = 2.369
Other characteristicsnon-radioactive, non-magnetic, fluorescent and triboluminescent.
References[2][3][4]

Sphalerite is asulfide mineral with thechemical formula(Zn,Fe)S.[5] It is the most important ore ofzinc. Sphalerite is found in a variety of deposit types, but it is primarily insedimentary exhalative,Mississippi-Valley type, andvolcanogenic massive sulfide deposits. It is found in association withgalena,chalcopyrite,pyrite (and othersulfides),calcite,dolomite,quartz,rhodochrosite, andfluorite.[6]

German geologistErnst Friedrich Glocker discovered sphalerite in 1847, naming it based on the Greek wordsphaleros, meaning "deceiving", due to the difficulty of identifying the mineral.[7]

In addition to zinc, sphalerite is an ore ofcadmium,gallium,germanium, andindium. Miners have been known to refer to sphalerite aszinc blende,black-jack, andruby blende.[8]Marmatite is an opaque black variety with a high iron content.[9]

Crystal habit and structure

[edit]
The crystal structure of sphalerite

Sphalerite crystallizes in theface-centered cubiczincblende crystal structure,[10] which was named after the mineral. This structure is a member of the hextetrahedral crystal class (space groupF43m). In the crystal structure, both the sulfur and the zinc or iron ions occupy the points of a face-centered cubic lattice, with the two lattices displaced from each other such that the zinc and iron are tetrahedrally coordinated to the sulfur ions, andvice versa.[11] Minerals similar to sphalerite include those in the sphalerite group, consisting of sphalerite,colaradoite,hawleyite,metacinnabar,stilleite andtiemannite.[12] The structure is closely related to the structure ofdiamond.[10] Thehexagonal polymorph of sphalerite iswurtzite, and the trigonal polymorph is matraite.[12] Wurtzite is the higher temperature polymorph, stable at temperatures above 1,020 °C (1,870 °F).[13] The lattice constant for zinc sulfide in the zinc blende crystal structure is 0.541nm.[14] Sphalerite has been found as apseudomorph, taking the crystal structure ofgalena,tetrahedrite,barite andcalcite.[13][15] Sphalerite can have Spinel Law twins, where the twin axis is [111].

The chemical formula of sphalerite is(Zn,Fe)S; the iron content generally increases with increasing formation temperature and can reach up to 40%.[6] The material can be considered a ternary compound between the binary endpointsZnS andFeS with composition ZnxFe(1-x)S, where x can range from 1 (pure ZnS) to 0.6.[citation needed]

All natural sphalerite contains concentrations of various impurities, which generally substitute for zinc in the cation position in the lattice; the most common cation impurities arecadmium,mercury andmanganese, butgallium,germanium andindium may also be present in relatively high concentrations (hundreds to thousands of ppm).[16][17] Cadmium can replace up to 1% of zinc and manganese is generally found in sphalerite with high iron abundances.[12] Sulfur in the anion position can be substituted for byselenium andtellurium.[12] The abundances of these impurities are controlled by the conditions under which the sphalerite formed; formation temperature, pressure, element availability and fluid composition are important controls.[17]

Properties

[edit]

Physical properties

[edit]

Sphalerite possesses perfect dodecahedralcleavage, having six cleavage planes.[10][18] In pure form, it is a semiconductor, but transitions to a conductor as the iron content increases.[19] It has a hardness of 3.5 to 4 on theMohs scale of mineral hardness.[20]

It can be distinguished from similar minerals by its perfect cleavage, its distinctive resinous luster, and the reddish-brown streak of the darker varieties.[21]

Optical properties

[edit]
Sphalerite fluorescing under ultraviolet light (Sternberg Museum of Natural History, Kansas, US)

Purezinc sulfide is awide-bandgap semiconductor, with bandgap of about 3.54 electron volts, which makes the pure material transparent in the visible spectrum. Increasing iron content will make the material opaque, while various impurities can give the crystal a variety of colors.[20] In thin section, sphalerite exhibits very high positiverelief and appears colorless to pale yellow or brown, with nopleochroism.[6]

Therefractive index of sphalerite (as measured via sodium light, average wavelength 589.3 nm) ranges from 2.37 when it is pure ZnS to 2.50 when there is 40% iron content.[6] Sphalerite is isotropic under cross-polarized light, however sphalerite can experiencebirefringence if intergrown with its polymorph wurtzite; the birefringence can increase from 0 (0% wurtzite) up to 0.022 (100% wurtzite).[6][13]

Depending on the impurities, sphalerite willfluoresce under ultraviolet light. Sphalerite can betriboluminescent.[22] Sphalerite has a characteristic triboluminescence of yellow-orange. Typically, specimens cut into end-slabs are ideal for displaying this property.[citation needed]

Varieties

[edit]

Gemmy, colorless to pale green sphalerite fromFranklin, New Jersey (seeFranklin Furnace), are highly fluorescent orange and/or blue under longwave ultraviolet light and are known ascleiophane, an almost pure ZnS variety.[23] Cleiophane contains less than 0.1% of iron in the sphalerite crystal structure.[12] Marmatite or christophite is an opaque black variety of sphalerite and its coloring is due to high quantities of iron, which can reach up to 25%; marmatite is named afterMarmato mining district inColombia and christophite is named for the St. Christoph mine inBreitenbrunn,Saxony.[23] Both marmatite and cleiophane are not recognized by theInternational Mineralogical Association (IMA).[24] Red, orange or brownish-red sphalerite is termed ruby blende or ruby zinc, whereas dark colored sphalerite is termed black-jack.[23]

Deposit types

[edit]

Sphalerite is amongst the most common sulfide minerals, and it is found worldwide and in a variety of deposit types.[8] The reason for the wide distribution of sphalerite is that it appears in many types of deposits; it is found inskarns,[25]hydrothermal deposits,[26] sedimentary beds,[27]volcanogenic massive sulfide deposits (VMS),[28]Mississippi-valley type deposits (MVT),[29][30]granite[12] andcoal.[31]

Sedimentary exhalitive

[edit]

Approximately 50% of zinc (from sphalerite) and lead comes fromSedimentary exhalative (SEDEX) deposits, which are stratiform Pb-Zn sulfides that form at seafloor vents.[32] The metals precipitate from hydrothermal fluids and are hosted by shales, carbonates and organic-rich siltstones inback-arc basins and failed continental rifts.[33] The main ore minerals in SEDEX deposits are sphalerite, galena, pyrite,pyrrhotite andmarcasite, with minor sulfosalts such astetrahedrite-freibergite andboulangerite; the zinc + lead grade typically ranges between 10 and 20%.[33] Important SEDEX mines areRed Dog inAlaska,Sullivan Mine inBritish Columbia,Mount Isa andBroken Hill inAustralia and Mehdiabad inIran.[34]

Mississippi-Valley type

[edit]

Similar to SEDEX, Mississippi-Valley type (MVT) deposits are also a Pb-Zn deposit which contains sphalerite.[35] However, they only account for 15–20% of zinc and lead, are 25% smaller in tonnage than SEDEX deposits and have lower grades of 5–10% Pb + Zn.[33] MVT deposits form from the replacement of carbonate host rocks such as dolostone and limestone by ore minerals; they are located in platforms and foreland thrust belts.[33] Furthermore, they are stratabound, typically Phanerozoic in age and epigenetic (form after the lithification of the carbonate host rocks).[36] The ore minerals are the same as SEDEX deposits: sphalerite, galena, pyrite, pyrrhotite and marcasite, with minor sulfosalts.[36] Mines that contain MVT deposits include Polaris in the Canadian arctic, Mississippi River in theUnited States, Pine Point in Northwest Territories, and Admiral Bay in Australia.[37]

Volcanogenic massive sulfide

[edit]

Volcanogenic massive sulfide (VMS) deposits can be Cu-Zn- or Zn-Pb-Cu-rich, and accounts for 25% of Zn in reserves.[33] There are various types of VMS deposits with a range of regional contexts and host rock compositions; a common characteristic is that they are all hosted by submarine volcanic rocks.[32] They form from metals such as copper and zinc being transferred by hydrothermal fluids (modified seawater) which leach them from volcanic rocks in the oceanic crust; the metal-saturated fluid rises through fractures and faults to the surface, where it cools and deposits the metals as a VMS deposit.[38] The most abundant ore minerals are pyrite, chalcopyrite, sphalerite and pyrrhotite.[33] Mines that contain VMS deposits includeKidd Creek in Ontario, Urals inRussia, Troodos inCyprus, and Besshi inJapan.[39]

Localities

[edit]

The top producers of sphalerite include the United States, Russia,Mexico,Germany, Australia,Canada,China,Ireland,Peru,Kazakhstan andEngland.[40][41]

Sources of high quality crystals include:

PlaceCountry
Freiberg,Saxony,
Neudorf,Harz Mountains
Germany
Lengenbach Quarry,Binntal,ValaisSwitzerland
Horní Slavkov andPříbramCzech Republic
RodnaRomania
Madan, Smolyan Province,Rhodope MountainsBulgaria
Aliva mine,Picos de Europa Mountains,Cantabria [Santander] ProvinceSpain
Alston Moor,CumbriaEngland
Dalnegorsk,Primorskiy KrayRussia
Watson Lake,Yukon TerritoryCanada
Flin Flon,ManitobaCanada
Tri-State district including deposits near
Baxter Springs,Cherokee County, Kansas;
Joplin,Jasper County, Missouri
andPicher,Ottawa County, Oklahoma
US
Elmwood mine, nearCarthage,Smith County, TennesseeUS
Eagle mine, Gilman district,Eagle County, ColoradoUS
Santa Eulalia, ChihuahuaMexico
Naica,ChihuahuaMexico
Cananea,SonoraMexico
HuaronPeru
CasapalcaPeru
HuancavelicaPeru
ZinkgruvanSweden

Uses

[edit]

Metal ore

[edit]

Sphalerite is an important ore of zinc; around 95% of all primary zinc is extracted from sphalerite ore.[42] However, due to its variable trace element content, sphalerite is also an important source of several other metals such as cadmium,[43] gallium,[44] germanium,[45] and indium[46] which replace zinc. The ore was originally calledblende by miners (from Germanblind ordeceiving) because it resembles galena but yields no lead.[21]

Brass and bronze

[edit]

The zinc in sphalerite is used to producebrass, an alloy of copper with 3–45% zinc.[18] Major element alloy compositions of brass objects provide evidence that sphalerite was being used to produce brass by the Islamic as far back as themedieval ages between the 7th and 16th century CE.[47] Sphalerite may have also been used during the cementation process of brass in Northern China during the 12th–13th century CE (Jin Dynasty).[48] Besides brass, the zinc in sphalerite can also be used to produce certain types of bronze; bronze is dominantly copper which is alloyed with other metals such as tin, zinc, lead, nickel, iron and arsenic.[49]

Faceted sphalerite, known by the name of Étoile des Asturies, one of the largest in existence. It actually comes from the Aliva mine, Cantabria (Spain). Cantonal Museum of Geology of Lausanne.

Other

[edit]

Gallery

[edit]
  • Sphalerite and barite from Cumberland Mine, Tennessee, US
    Sphalerite and barite from Cumberland Mine, Tennessee, US
  • Sphalerite on dolostone, from Millersville Quarry, Ohio, US
    Sphalerite on dolostone, from Millersville Quarry, Ohio, US
  • Tan crystal of calcite attached to a cluster of black sphalerite crystals
    Tan crystal of calcite attached to a cluster of black sphalerite crystals
  • Sharp, tetrahedral sphalerite crystals with minor associated chalcopyrite from the Idarado Mine, Telluride, Ouray District, Colorado, US
    Sharp, tetrahedral sphalerite crystals with minor associated chalcopyrite from the Idarado Mine, Telluride, Ouray District, Colorado, US
  • Gem quality twinned cherry-red sphalerite crystal (1.8 cm) from Hunan Province, China
    Gem quality twinned cherry-red sphalerite crystal (1.8 cm) from Hunan Province, China
  • Sphalerite crystals from Áliva, Camaleño, Cantabria (Spain)
    Sphalerite crystals from Áliva, Camaleño, Cantabria (Spain)
  • Purple fluorite and sphalerite, from the Elmwood mine, Smith county, Tennessee, US
    Purple fluorite and sphalerite, from the Elmwood mine, Smith county, Tennessee, US
  • Sphalerite crystal in geodized brachiopod
    Sphalerite crystal in geodizedbrachiopod

See also

[edit]

References

[edit]
  1. ^Warr, L.N. (2021)."IMA–CNMNC approved mineral symbols".Mineralogical Magazine.85 (3):291–320.Bibcode:2021MinM...85..291W.doi:10.1180/mgm.2021.43.S2CID 235729616.
  2. ^Sphalerite, WebMineral.com, retrieved2011-06-20
  3. ^"Sphalerite".Mindat.org. Retrieved2011-06-20.
  4. ^Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005)."Sphalerite"(PDF).Handbook of Mineralogy. Mineral Data Publishing. Retrieved14 March 2022.
  5. ^Muntyan, Barbara L. (1999)."Colorado Sphalerite".Rocks & Minerals.74 (4):220–235.Bibcode:1999RoMin..74..220M.doi:10.1080/00357529909602545.ISSN 0035-7529 – via Scholars Portal Journals.
  6. ^abcdeNesse, William D. (2013).Introduction to optical mineralogy (4th ed.). New York: Oxford University Press. p. 121.ISBN 978-0-19-984627-6.OCLC 817795500.
  7. ^Glocker, Ernst Friedrich.Generum et specierum mineralium, secundum ordines naturales digestorum synopsis, omnium, quotquot adhuc reperta sunt mineralium nomina complectens. : Adjectis synonymis et veteribus et recentioribus ac novissimarum analysium chemicarum summis. Systematis mineralium naturalis prodromus.OCLC 995480390.
  8. ^abRichard Rennie and Jonathan Law (2016).A dictionary of chemistry (7th ed.). Oxford: Oxford University Press.ISBN 978-0-19-178954-0.OCLC 936373100.
  9. ^Zhou, Jiahui; Jiang, Feng; Li, Sijie; Zhao, Wenqing; Sun, Wei; Ji, Xiaobo; Yang, Yue (2019)."Natural marmatite with low discharge platform and excellent cyclicity as potential anode material for lithium-ion batteries".Electrochimica Acta.321: 134676.doi:10.1016/j.electacta.2019.134676.S2CID 202080193 – via Elsevier SD Freedom Collection.
  10. ^abcKlein, Cornelis (2017).Earth materials: introduction to mineralogy and petrology. Anthony R. Philpotts (2nd ed.). Cambridge, United Kingdom.ISBN 978-1-107-15540-4.OCLC 962853030.{{cite book}}: CS1 maint: location missing publisher (link)
  11. ^Klein, Cornelis; Hurlbut, Cornelius S. Jr. (1993).Manual of mineralogy : (after James D. Dana) (21st ed.). New York: Wiley. pp. 211–212.ISBN 047157452X.
  12. ^abcdefCook, Robert B. (2003)."Connoisseur's Choice: Sphalerite, Eagle Mine, Gilman, Eagle County, Colorado".Rocks & Minerals.78 (5):330–334.Bibcode:2003RoMin..78..330C.doi:10.1080/00357529.2003.9926742.ISSN 0035-7529.S2CID 130762310.
  13. ^abcDeer, W. A. (2013).An introduction to the rock-forming minerals. R. A. Howie, J. Zussman (3rd ed.). London.ISBN 978-0-903056-27-4.OCLC 858884283.{{cite book}}: CS1 maint: location missing publisher (link)
  14. ^International Centre for Diffraction Data reference 04-004-3804, ICCD reference 04-004-3804.
  15. ^Kloprogge, J. Theo (2017).Photo atlas of mineral pseudomorphism. Robert M. Lavinsky. Amsterdam, Netherlands.ISBN 978-0-12-803703-4.OCLC 999727666.{{cite book}}: CS1 maint: location missing publisher (link)
  16. ^Cook, Nigel J.; Ciobanu, Cristiana L.; Pring, Allan; Skinner, William; Shimizu, Masaaki; Danyushevsky, Leonid; Saini-Eidukat, Bernhardt; Melcher, Frank (2009)."Trace and minor elements in sphalerite: A LA-ICPMS study".Geochimica et Cosmochimica Acta.73 (16):4761–4791.Bibcode:2009GeCoA..73.4761C.doi:10.1016/j.gca.2009.05.045.
  17. ^abFrenzel, Max; Hirsch, Tamino; Gutzmer, Jens (July 2016). "Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis".Ore Geology Reviews.76:52–78.Bibcode:2016OGRv...76...52F.doi:10.1016/j.oregeorev.2015.12.017.
  18. ^abKlein, Cornelis; Philpotts, Anthony (2017).Earth materials : introduction to mineralogy and petrology (2nd ed.). Cambridge: Cambridge University Press.ISBN 978-1-107-15540-4.OCLC 975051556.
  19. ^Deng, Jiushuai; Lai, Hao; Chen, Miao; Glen, Matthew; Wen, Shuming; Zhao, Biao; Liu, Zilong; Yang, Hua; Liu, Mingshi; Huang, Lingyun; Guan, Shiliang; Wang, Ping (June 2019). "Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study".Minerals Engineering.136:168–174.Bibcode:2019MiEng.136..168D.doi:10.1016/j.mineng.2019.02.012.S2CID 182111130.
  20. ^abHobart M. King,Sphalerite, geology.com. Retrieved 22 Feb. 2022.
  21. ^abKlein & Hurlbut 1993, p. 357.
  22. ^"Sphalerite"(PDF).Handbook of Mineralogy. 2005. Retrieved2022-09-20.
  23. ^abcManutchehr-Danai, Mohsen (2009).Dictionary of gems and gemology (3rd ed.). New York: Springer-Verlag, Berlin, Heidelberg.ISBN 9783540727958.OCLC 646793373.
  24. ^"International Mineralogical Association – Commission on New Minerals, Nomenclature and Classification".cnmnc.main.jp. Retrieved2021-02-25.
  25. ^Ye, Lin; Cook, Nigel J.; Ciobanu, Cristiana L.; Yuping, Liu; Qian, Zhang; Tiegeng, Liu; Wei, Gao; Yulong, Yang; Danyushevskiy, Leonid (2011)."Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study".Ore Geology Reviews.39 (4):188–217.Bibcode:2011OGRv...39..188Y.doi:10.1016/j.oregeorev.2011.03.001.
  26. ^Knorsch, Manuel; Nadoll, Patrick; Klemd, Reiner (2020)."Trace elements and textures of hydrothermal sphalerite and pyrite in Upper Permian (Zechstein) carbonates of the North German Basin".Journal of Geochemical Exploration.209: 106416.Bibcode:2020JCExp.20906416K.doi:10.1016/j.gexplo.2019.106416.S2CID 210265207.
  27. ^Zhu, Chuanwei; Liao, Shili; Wang, Wei; Zhang, Yuxu; Yang, Tao; Fan, Haifeng; Wen, Hanjie (2018)."Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn-Pb deposit, Sichuan Province, China".Ore Geology Reviews.95:639–648.Bibcode:2018OGRv...95..639Z.doi:10.1016/j.oregeorev.2018.03.018.
  28. ^Akbulut, Mehmet; Oyman, Tolga; Çiçek, Mustafa; Selby, David; Özgenç, İsmet; Tokçaer, Murat (2016)."Petrography, mineral chemistry, fluid inclusion microthermometry and Re–Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey)".Ore Geology Reviews.76:1–18.Bibcode:2016OGRv...76....1A.doi:10.1016/j.oregeorev.2016.01.002.
  29. ^Nakai, Shun'ichi; Halliday, Alex N; Kesler, Stephen E; Jones, Henry D; Kyle, J.Richard; Lane, Thomas E (1993)."Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits".Geochimica et Cosmochimica Acta.57 (2):417–427.Bibcode:1993GeCoA..57..417N.doi:10.1016/0016-7037(93)90440-8.hdl:2027.42/31084.
  30. ^Viets, John G.; Hopkins, Roy T.; Miller, Bruce M. (1992)."Variations in minor and trace metals in sphalerite from mississippi valley-type deposits of the Ozark region; genetic implications".Economic Geology.87 (7):1897–1905.Bibcode:1992EcGeo..87.1897V.doi:10.2113/gsecongeo.87.7.1897.ISSN 1554-0774.
  31. ^Hatch, J. R.; Gluskoter, H. J.; Lindahl, P. C. (1976)."Sphalerite in coals from the Illinois Basin".Economic Geology.71 (3):613–624.Bibcode:1976EcGeo..71..613H.doi:10.2113/gsecongeo.71.3.613.ISSN 1554-0774.
  32. ^abKropschot, S.J.; Doebrich, Jeff L. (2011)."Zinc-The key to preventing corrosion".Fact Sheet: 13.Bibcode:2011usgs.rept...13K.doi:10.3133/fs20113016.ISSN 2327-6932.
  33. ^abcdefArndt, N. T. (2015).Metals and society : an introduction to economic geology. Stephen E. Kesler, Clément Ganino (2nd ed.). Cham.ISBN 978-3-319-17232-3.OCLC 914168910.{{cite book}}: CS1 maint: location missing publisher (link)
  34. ^Emsbo, Poul; Seal, Robert R.; Breit, George N.; Diehl, Sharon F.; Shah, Anjana K. (2016)."Sedimentary exhalative (SEDEX) zinc-lead-silver deposit model".Scientific Investigations Report: 11.Bibcode:2016usgs.rept...11E.doi:10.3133/sir20105070n.ISSN 2328-0328.
  35. ^Misra, Kula C. (2000),"Mississippi Valley-Type (MVT) Zinc-Lead Deposits",Understanding Mineral Deposits, Dordrecht: Springer Netherlands, pp. 573–612,doi:10.1007/978-94-011-3925-0_13,ISBN 978-94-010-5752-3, retrieved2021-03-26
  36. ^abHaldar, S.K. (2020),"Mineral deposits: host rocks and genetic model",Introduction to Mineralogy and Petrology, Elsevier, pp. 313–348,doi:10.1016/b978-0-12-820585-3.00009-0,ISBN 978-0-12-820585-3,S2CID 226572449, retrieved2021-03-26
  37. ^Sangster, D F (1995)."Mississippi valley-type lead-zinc".doi:10.4095/207988.{{cite journal}}:Cite journal requires|journal= (help)
  38. ^Roland., Shanks, Wayne C. Thurston (2012).Volcanogenic massive sulfide occurrence model. U.S. Dept. of the Interior, U.S. Geological Survey.OCLC 809680409.{{cite book}}: CS1 maint: multiple names: authors list (link)
  39. ^du Bray, Edward A. (1995)."Preliminary compilation of descriptive geoenvironmental mineral deposit models".Open-File Report: 61.Bibcode:1995usgs.rept...61D.doi:10.3133/ofr95831.ISSN 2331-1258.
  40. ^Muntyan, Barbara L. (1999)."Colorado Sphalerite".Rocks & Minerals.74 (4):220–235.Bibcode:1999RoMin..74..220M.doi:10.1080/00357529909602545.ISSN 0035-7529.
  41. ^ab"Zinc".Agricultural and Mineral Commodities Year Book (0 ed.). Routledge. 2003-09-02. pp. 358–366.doi:10.4324/9780203403556-47.ISBN 978-0-203-40355-6. Retrieved2021-02-25.
  42. ^"Zinc Statistics and Information".www.usgs.gov. Retrieved2021-02-25.
  43. ^Cadmium – In: USGS Mineral Commodity Summaries. United States Geological Survey. 2017.
  44. ^Frenzel, Max; Ketris, Marina P.; Seifert, Thomas; Gutzmer, Jens (March 2016). "On the current and future availability of gallium".Resources Policy.47:38–50.Bibcode:2016RePol..47...38F.doi:10.1016/j.resourpol.2015.11.005.
  45. ^Frenzel, Max; Ketris, Marina P.; Gutzmer, Jens (2014-04-01). "On the geological availability of germanium".Mineralium Deposita.49 (4):471–486.Bibcode:2014MinDe..49..471F.doi:10.1007/s00126-013-0506-z.ISSN 0026-4598.S2CID 129902592.
  46. ^Frenzel, Max; Mikolajczak, Claire; Reuter, Markus A.; Gutzmer, Jens (June 2017)."Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium".Resources Policy.52:327–335.Bibcode:2017RePol..52..327F.doi:10.1016/j.resourpol.2017.04.008.
  47. ^Craddock, P.T. (1990).Brass in the medieval Islamic world; 2000 years of zinc and brass. British Museum Publications Ltd. pp. 73–101.ISBN 0-86159-050-3.
  48. ^Xiao, Hongyan; Huang, Xin; Cui, Jianfeng (2020)."Local cementation brass production during 12th–13th century CE, North China: Evidences from a royal summer palace of Jin Dynasty".Journal of Archaeological Science: Reports.34: 102657.Bibcode:2020JArSR..34j2657X.doi:10.1016/j.jasrep.2020.102657.S2CID 229414402.
  49. ^Tylecote, R. F. (2002).A history of metallurgy. Institute of Materials (2nd ed.). London: Maney Pub., for the Institute of Materials.ISBN 1-902653-79-3.OCLC 705004248.
  50. ^S., McGee, E. (1999).Colorado Yule marble : building stone of the Lincoln Memorial : an investigation of differences in durability of the Colorado Yule marble, a widely used building stone. U.S. Dept. of the Interior, U.S. Geological Survey.ISBN 0-607-91994-9.OCLC 1004947563.{{cite book}}: CS1 maint: multiple names: authors list (link)
  51. ^Hai, Yun; Wang, Shuonan; Liu, Hao; Lv, Guocheng; Mei, Lefu; Liao, Libing (2020)."Nanosized Zinc Sulfide/Reduced Graphene Oxide Composite Synthesized from Natural Bulk Sphalerite as Good Performance Anode for Lithium-Ion Batteries".JOM.72 (12):4505–4513.Bibcode:2020JOM....72.4505H.doi:10.1007/s11837-020-04372-5.ISSN 1047-4838.S2CID 224897123.
  52. ^Voudouris, Panagiotis; Mavrogonatos, Constantinos; Graham, Ian; Giuliani, Gaston; Tarantola, Alexandre; Melfos, Vasilios; Karampelas, Stefanos; Katerinopoulos, Athanasios; Magganas, Andreas (2019-07-29)."Gemstones of Greece: Geology and Crystallizing Environments".Minerals.9 (8): 461.Bibcode:2019Mine....9..461V.doi:10.3390/min9080461.ISSN 2075-163X.
  53. ^Murphy, Jack; Modreski, Peter (2002-08-01)."A Tour of Colorado Gemstone Localities".Rocks & Minerals.77 (4):218–238.Bibcode:2002RoMin..77..218M.doi:10.1080/00357529.2002.9925639.ISSN 0035-7529.S2CID 128754037.

Further reading

[edit]
  • Dana's Manual of MineralogyISBN 0-471-03288-3
  • Webster, R., Read, P. G. (Ed.) (2000).Gems: Their sources, descriptions and identification (5th ed.), p. 386. Butterworth-Heinemann, Great Britain.ISBN 0-7506-1674-1

External links

[edit]
Wikimedia Commons has media related toSphalerite.
Ore minerals, mineral mixtures andore deposits
Ores
Oxides
Sulfides
Carbonates
Other
Deposit types
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Sphalerite&oldid=1272046575"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp