Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of zinc

From Wikipedia, the free encyclopedia
(Redirected fromZinc-67)

This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(February 2011) (Learn how and when to remove this message)
Isotopes ofzinc (30Zn)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
64Zn49.2%stable
65Znsynth244 dβ+65Cu
66Zn27.7%stable
67Zn4%stable
68Zn18.5%stable
69Znsynth56 minβ69Ga
69mZnsynth13.8 hβ69Ga
70Zn0.6%stable
71Znsynth2.4 minβ71Ga
71mZnsynth4 hβ71Ga
72Znsynth46.5 hβ72Ga
Standard atomic weightAr°(Zn)

Naturally occurringzinc (30Zn) is composed of the 5 stableisotopes64Zn,66Zn,67Zn,68Zn, and70Zn with64Zn being the most abundant (48.6%natural abundance). Twenty-eightradioisotopes have been characterised with the most stable being65Zn with ahalf-life of 244.26 days, and then72Zn with a half-life of 46.5 hours. All of the remainingradioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10meta states.

Zinc has been proposed as a "salting" material fornuclear weapons. A jacket ofisotopically enriched64Zn, irradiated by the intense high-energy neutron flux from an explodingthermonuclear weapon, would transmute into the radioactive isotope65Zn with a half-life of 244 days and produce approximately 1.115 MeV[4] ofgamma radiation, significantly increasing the radioactivity of the weapon'sfallout for several years. Such a weapon is not known to have ever been built, tested, or used.[5]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[6]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 4]
Natural abundance(mole fraction)
Excitation energyNormal proportion[1]Range of variation
54Zn302453.99388(23)#1.8(5) ms2p52Ni0+
55Zn302554.98468(43)#19.8(13) msβ+, p (91.0%)54Ni5/2−#
β+ (9.0%)55Cu
56Zn302655.97274(43)#32.4(7) msβ+, p (88.0%)55Ni0+
β+ (12.0%)56Cu
57Zn302756.96506(22)#45.7(6) msβ+, p (87%)56Ni7/2−#
β+ (13%)57Cu
58Zn302857.954590(54)86.0(19) msβ+ (99.3%)58Cu0+
β+, p (0.7%)57Ni
59Zn302958.94931189(81)178.7(13) msβ+ (99.90%)59Cu3/2−
β+, p (0.10%)58Ni
60Zn303059.94184132(59)2.38(5) minβ+60Cu0+
61Zn303160.939507(17)89.1(2) sβ+61Cu3/2−
62Zn303261.93433336(66)9.193(15) hβ+62Cu0+
63Zn303362.9332111(17)38.47(5) minβ+63Cu3/2−
64Zn303463.92914178(69)Observationally Stable[n 8]0+0.4917(75)
65Zn303564.92924053(69)243.94(4) dEC (98.579(7)%)65Cu5/2−
β+ (1.421(7)%)[7]
65mZn53.928(10) keV1.6(6) μsIT65Zn1/2−
66Zn303665.92603364(80)Stable0+0.2773(98)
67Zn303766.92712742(81)Stable5/2−0.0404(16)
67m1Zn93.312(5) keV9.15(7) μsIT67Zn1/2−
67m2Zn604.48(5) keV333(14) nsIT67Zn9/2+
68Zn303867.92484423(84)Stable0+0.1845(63)
69Zn303968.92655036(85)56.4(9) minβ69Ga1/2−
69mZn438.636(18) keV13.747(11) hIT (99.97%)69Zn9/2+
β (0.033%)69Ga
70Zn304069.9253192(21)Observationally Stable[n 9]0+0.0061(10)
71Zn304170.9277196(28)2.40(5) minβ71Ga1/2−
71mZn157.7(13) keV4.148(12) hβ71Ga9/2+
IT?71Zn
72Zn304271.9268428(23)46.5(1) hβ72Ga0+
73Zn304372.9295826(20)24.5(2) sβ73Ga1/2−
73mZn195.5(2) keV13.0(2) msIT73Zn5/2+
74Zn304473.9294073(27)95.6(12) sβ74Ga0+
75Zn304574.9328402(21)10.2(2) sβ75Ga7/2+
75mZn126.94(9) keV5# sβ?75Ga1/2−
IT?75Zn
76Zn304675.9331150(16)5.7(3) sβ76Ga0+
77Zn304776.9368872(21)2.08(5) sβ77Ga7/2+
77mZn772.440(15) keV1.05(10) sβ (66%)77Ga1/2−
IT (34%)77Zn
78Zn304877.9382892(21)1.47(15) sβ78Ga0+
β,n?77Ga
78mZn2673.7(6) keV320(6) nsIT78Zn(8+)
79Zn304978.9426381(24)746(42) msβ (98.3%)79Ga9/2+
β,n (1.7%)78Ga
79mZn942(10) keV[8]>200 msβ?79Ga1/2+
IT?79Zn
80Zn305079.9445529(28)562.2(30) msβ (98.64%)80Ga0+
β, n (1.36%)79Ga
81Zn305180.9504026(54)299.4(21) msβ (77%)81Ga(1/2+, 5/2+)
β, n (23%)80Ga
β, 2n?79Ga
82Zn305281.9545741(33)177.9(25) msβ, n (69%)81Ga0+
β (31%)82Ga
β, 2n?80Ga
83Zn305382.96104(32)#100(3) msβ, n (71%)82Ga3/2+#
β (29%)83Ga
β, 2n?81Ga
84Zn305483.96583(43)#54(8) msβ, n (73%)83Ga0+
β (27%)84Ga
β, 2n?82Ga
85Zn305584.97305(54)#40# ms [>400 ns]β?85Ga5/2+#
β, n?84Ga
β, 2n?83Ga
86Zn[9]305685.97846(54)#β?86Ga0+
β, n?85Ga
87Zn[9]3057
This table header & footer:
  1. ^mZn – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^Modes of decay:
    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold symbol as daughter – Daughter product is stable.
  7. ^( ) spin value – Indicates spin with weak assignment arguments.
  8. ^Believed to undergoβ+β+ decay to64Ni with a half-life over 6.0×1016 y
  9. ^Believed to undergo ββ decay to70Ge with a half-life over 3.8×1018 y

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Zinc".CIAAW. 2007.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Roost, E.; Funck, E.; Spernol, A.; Vaninbroukx, R. (1972). "The decay of65Zn".Zeitschrift für Physik.250 (5):395–412.Bibcode:1972ZPhy..250..395D.doi:10.1007/BF01379752.S2CID 124728537.
  5. ^D. T. Win, M. Al Masum (2003)."Weapons of Mass Destruction"(PDF).Assumption University Journal of Technology.6 (4):199–219.
  6. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  7. ^"65Zn ε decay"(PDF). NNDC Chart of Nuclides.
  8. ^Nies, L.; Canete, L.; Dao, D. D.; Giraud, S.; Kankainen, A.; Lunney, D.; Nowacki, F.; Bastin, B.; Stryjczyk, M.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Eronen, T.; Fischer, P.; Flayol, M.; Girard Alcindor, V.; Herlert, A.; Jokinen, A.; Khanam, A.; Köster, U.; Lange, D.; Moore, I. D.; Müller, M.; Mougeot, M.; Nesterenko, D. A.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; de Roubin, A.; Rubchenya, V.; Schweiger, Ch.; Schweikhard, L.; Vilen, M.; Äystö, J. (30 November 2023). "Further Evidence for Shape Coexistence in Zn 79 m near Doubly Magic Ni 78".Physical Review Letters.131 (22).arXiv:2310.16915.doi:10.1103/PhysRevLett.131.222503.
  9. ^abShimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam".Physical Review C.109 (4).doi:10.1103/PhysRevC.109.044313.

External links

[edit]
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_zinc&oldid=1261808345#Zinc-67"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp