Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

XPoSat

From Wikipedia, the free encyclopedia
Indian space observatory
Not to be confused withIXPE.

X-ray Polarimeter Satellite
X-ray Polarimeter satellite (XPoSat) in deployed configuration
NamesXPoSat
Mission typeX-ray polarimetry
OperatorISRO
COSPAR ID2024-001AEdit this at Wikidata
SATCATno.58694Edit this on Wikidata
Websitewww.isro.gov.in/XPoSat.html
Mission durationPlanned : 5 years
Elapsed : 1 year, 10 months, 21 days[1]
Spacecraft properties
SpacecraftX-ray Polarimeter Satellite
BusModified IMS-2[2]
ManufacturerRaman Research Institute
U R Rao Satellite Centre
Launch mass480 kg (1,060 lb)[3]
Payload mass144 kg (317 lb)[3]
Dimensions65 × 65 × 60 cm (26 × 26 × 24 in)
Power1260watts[3]
Start of mission
Launch date1 January 2024, 9:10 AMIST (3:40UTC)[4]
RocketPSLV-DL[5][6]
Launch siteSatish Dhawan Space CentreFirst Launch Pad
ContractorISRO
Orbital parameters
Reference systemGeocentric orbit
RegimeLow Earth orbit
Perigee altitude638 km
Apogee altitude653 km
Inclination[3][7]
Period97.61 minutes
Instruments
Polarimeter Instrument in X-rays (POLIX)
X-ray Spectroscopy and Timing (XSPECT)

XPoSat Logo
XPoSat being tested on Earth

TheX-ray Polarimeter Satellite (XPoSat) is anISRO-manufacturedspace observatory to studypolarisation ofcosmic X-rays. It was launched on 1 January 2024 on aPSLV rocket,[8] and it has an expected operational lifespan of at least five years.[9][10]

The telescope was developed by theRaman Research Institute (RRI) in close collaboration with theU R Rao Satellite Centre (URSC).[11] Per ISRO, this mission will complement the efforts of US space agencyNASA, which launched itsImaging X-ray Polarimetry Explorer (IXPE) in 2021 by observing space events across a broad energy range of 2–30 keV.[12][13]

Overview

[edit]

Studying how radiation is polarised gives away the nature of its source, including the strength and distribution of itsmagnetic fields and the nature of other radiation around it. XPoSat will study the 50 locally brightest (known) sources in the universe consisting of, variously,pulsars,black hole X-ray binaries,active galactic nuclei,neutron stars and non-thermalsupernova remnants.[9][14] The observatory was placed in a circularlow Earth orbit of 500–700 km (310–430 mi).[9][2] The payloads onboard XPoSat will observe the X-Ray sources during its transit through the Earth's eclipse period.[15]

History

[edit]

The XPoSat project began in September 2017 with theIndian Space Research Organisation (ISRO) grant of₹95,000,000.Preliminary Design Review (PDR) of the XPoSat including the POLIX payload was completed in September 2018, followed by preparation of POLIX Qualification Model and beginning of some of its Flight Model components fabrication.[16][17]

Launch

[edit]

XPoSAT was successfully launched aboard thePSLV-C58 on 1 January 2024 at 9:10 am IST. The launch was precise, leaving only a deviation of (±) 3 km. Following the launch, the final 4th stage of thePSLV dropped to a 350 x 350 km orbit to facilitate its use as thePSLV Orbital Experimental Module POEM-3.[18][19]

Launch of PSLV C-58 with XpoSAT and other hosted payloads

First Light

[edit]

XSPECT

[edit]

The XSPECT payload on XPoSat captured itsfirst light from theCassiopeia A (Cas A), a supernova remnant somewhat over 11,000light years away on 5 January 2024. During its performance verification phase, XSPECT was directed towards this standard celestial source used for instrument evaluation which is among the brightestradio frequency sources in the sky. The observation commenced on 5 January 2024, capturing the supernova remnant's emission lines corresponding to elements such asmagnesium,silicon,sulphur,argon,calcium, andiron.[20][21]

POLIX

[edit]

XPoSat's POLIX sensor has started making scientific observations including first-ever data of x-ray polarisation of theCrab Pulsar, its first subject. The observation, which verified the POLIX instrument's operation, took place between January 15 and 18, 2024. POLIX monitored this fast-spinningneutron star in theCrab Nebula that releases roughly thirty X-ray pulses per second. Through the identification of polarization in its incoming X-rays, POLIX provides fresh perspectives on the physical emission processes at the surface of neutron stars. On 10 January 2024, the instrument was gradually turned on.[22][23]

Science

[edit]

Solar observations

[edit]

In response to a massive Solar flare in May 2024, XpoSAT, along withAditya-L1 and theChandrayaan-2 Orbiter collected data on the event. XSPECT was used in conjunction with data from ground based observatories to provide fast timed and good spectroscopic results in the X-Ray spectra.[24]

Astronomical observations

[edit]

On March 19, 2025, the XSPECT instrument detected a rarethermonuclear “burst” peaking in just a few seconds and fading over about 20 seconds, followed about 16 minutes later by a much longer and more powerful event called a “superburst” from aneutron star system named4U 1608-52, located about 4,000 light-years from Earth. XSPECT’s detailed observations showed the neutron star’s surface temperature during the bursts reached around 20 million degrees Kelvin, with a radius close to 9.3 kilometers.The data also suggest special processes likeCompton scattering might be involved in the superburst’s high brightness and slow fade. The superburst was also observed by theMAXI experiment on theISS.[25][26]

Release of Data

[edit]

ISRO released the first tranche ofXpoSAT data to the public on October 13 2025, during a national-level organisational meet.The maiden Datasets release contained over 134GB of data and was followed by an appraisal of the mission.[27]

Payloads

[edit]
Render of XpoSAT inside thePayload fairing of the PSLV rocket.

Two payloads of XPoSat are hosted on amodified IMS-2satellite bus.[9] Primary scientific payload is Polarimeter Instrument in X-rays (POLIX) to study the degree and angle of polarisation of about 50 locally brightest astronomicalX-ray sources of different types during its mission in the energy range 8-30keV.[2][28] POLIX, a 125 kg (276 lb) instrument,[9] was developed by theRaman Research Institute.[14][2][28][29]

Polarimeter Instrument in X-rays (POLIX)

[edit]
POLIX

POLIX is the primary scientific payload aboard XPoSat. It is a Thomson X-ray polarimeter, which measures the degree and angle of polarization (polarimetry parameters) of astronomical sources in the medium X-ray range (8-30 keV).[30] It has been developed by the Raman Research Institute.

Its science objectives are to measure:[29]

  • the strength and the distribution of magnetic field in the sources
  • geometricanisotropies in the sources
  • their alignment with respect to the line of sight
  • the nature of the accelerator responsible for energising theelectrons taking part inradiation andscattering.

The experiment configuration consists of acollimator, central low Z (lithium,lithium hydride orberyllium) scatterer surrounded by xenon filled four X-ray proportional counters as X-ray detectors which collects the scattered X-ray photons.[11] The instrument is rotated along the viewing axis leading to the measurement of theazimuthal distribution of the scattered X-ray photons which gives information on polarisation. Polarised X-rays will produce an azimuthal modulation in the count rate as opposed to uniform azimuthal distribution of count rate for unpolarised X-rays. POLIX has four independent detectors, each with its own front end and processing electronics. Localization of the X-ray photon in the detectors is carried out by the method of charge division in a set of resistive anode wires connected in series.

The prime objects for observation with this instrument are the X-ray bright accretion poweredneutron stars, accreting black holes in different spectral states, rotation powered pulsars,magnetars, and active galactic nuclei. This instrument bridges an energy gap in detection capability, between the soft X-ray polarimeters utilisingBragg reflection (OSO-8) or Photoelectron tracks (IXPE), andhard X-ray polarimeters usingCompton scattering such as the Cadmium Zinc Telluride Imager (CZTI) onAstroSat.

X-ray Spectroscopy and Timing (XSPECT)

[edit]
XSPECT

XSPECT is the secondary payload on XPoSat. It measures spectroscopic and timing information ofsoft X-rays generated by celestial X-ray sources.[31][12] XSPECT is designed to pursue timing studies of soft X-rays (0.8-15 keV),[30] complementary to what the Large Area X-ray Proportional Counter (LAXPC) does at high energies on AstroSat, while simultaneously providing adequate spectral resolution in the 0.8-15 keV band. It has an energy resolution of <200 eV at 5.9 keV (-20 °C) and a timing resolution of ~2 msec. It has been developed by theSpace Astronomy Group of theU R Rao Satellite Centre.

The detector achieves modest effective area without the use of focusing optics using the large area Swept Charge Devices (SCD), a variant of X-raycharge-coupled Devices (CCDs). SCDs permit fast readouts (10–100 kHz) and moderately good spectral resolution at the cost of a position sensitivity. These devices are unique in requiring very benign cooling requirement (requiring only passive cooling) unlike traditional X-ray CCDs.

Key science objectives of XSPECT include understanding long-term behavior of X-ray sources through correlation of timing characteristics with spectral state changes and emission line variations.

See also

[edit]
Wikimedia Commons has media related toXPoSat.

References

[edit]
  1. ^Dutt, Anonna (21 December 2023)."ISRO to usher in New Year with XPoSat launch". The Indian Express. Retrieved25 December 2023.
  2. ^abcd"ISRO announces Seven Mega Missions".GK Today. 20 May 2019. Archived fromthe original on 28 September 2019. Retrieved10 December 2021.
  3. ^abcdXPoSat User Meet. 25 May 2023. Event occurs at 1 hour 5 minutes 34 seconds.
  4. ^Mandal, Annu (22 December 2023)."ISRO to launch of XPoSat mission on January 1, 2024, to study polarisation along with NASA". Financial Express. Retrieved27 December 2023.
  5. ^Volosín, Juan I. Morales."XPoSat : PSLV-DL".Everyday Astronaut. Retrieved2 January 2024.
  6. ^"ISRO to study black holes; launch of X-Ray Polarimeter Satellite today". mint. 31 December 2023. Retrieved2 January 2024.
  7. ^Kumar, Chethan (30 November 2023)."XPoSat set to revolutionize x-ray astronomy: Isro". The Times of India. TNN. Retrieved25 December 2023.
  8. ^Nigam, Saumya (26 December 2023)."ISRO to launch PSLV-C58 with XPoSAT on January 1 to study black holes, neutron stars | Details".India TV. Retrieved27 December 2023.
  9. ^abcde"Future Exploration Missions of ISRO"(PDF).Dr. M. Annadurai, Director, ISAC, ISRO. UNCOPUOS 60th Session, Vienna, 2019. ISRO. Retrieved10 December 2021.
  10. ^"Loksabha Q&A"(PDF). DEPARTMENT OF SPACE. 5 April 2023. Archived fromthe original(PDF) on 6 April 2023. Retrieved8 April 2023.
  11. ^ab"Isro to illuminate cosmic mysteries of black holes with launch of XPoSat mission".India Today. 6 December 2023. Retrieved25 December 2023.
  12. ^abMandal, Annu (22 December 2023)."ISRO to launch of XPoSat mission on January 1, 2024, to study polarisation along with NASA".Financialexpress. Retrieved25 December 2023.
  13. ^Kumar, Chethan (30 November 2023)."XPoSat set to revolutionize x-ray astronomy: Isro".The Times of India.ISSN 0971-8257. Retrieved25 December 2023.
  14. ^ab"5 Unique Space Science Missions That ISRO Will Be Flying in the Near Future".The Wire. Retrieved25 December 2023.
  15. ^"India set to launch its first X-Ray Polarimeter Satellite: ISRO".The Hindu. 30 November 2023.ISSN 0971-751X. Retrieved25 December 2023.
  16. ^"XPoSat".isro.gov.in.
  17. ^"Raman Research Institute, Annual Report 2018-19"(PDF).Archived(PDF) from the original on 9 August 2020.
  18. ^"New Year's Day Launch, The XPoSAT mission by ISRO".BruTimes.
  19. ^Launch of PSLV-C58/XPoSat Mission from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota, retrieved1 January 2024
  20. ^"XSPECT payload performance verified with Cas A observation".Indian Space Research Organisation. 11 January 2024. Retrieved11 January 2024.
  21. ^"ISRO Payload "Aces" Performance Check, Captures Light From Supernova Event".NDTV.com. 11 January 2024. Retrieved12 January 2024.
  22. ^Kumar, Chethan (13 February 2024)."Isro achieves first pulsar observation from XPoSat payload".The Times of India.ISSN 0971-8257. Retrieved16 February 2024.
  23. ^"Isro's black hole mission XPoSat begins active observation, looks at Crab pulsar".India Today. 13 February 2024. Retrieved16 February 2024.
  24. ^"ISRO Captures the Signatures of the Recent Solar Eruptive Events from Earth, Sun-Earth L1 Point, and the Moon".www.isro.gov.in. Retrieved10 December 2024.
  25. ^"Nuclear explosion that lasted three hours: Indian satellite detects mega burst".India Today. 24 April 2025. Retrieved25 April 2025.
  26. ^"Scientific Payloads: HEL1OS".www.ursc.gov.in. Retrieved5 October 2025.
  27. ^"ISRO organises XPoSat National Meet and Opens up the Scientific Data from the XPoSat Mission along with Announcement of Opportunity for National Guest Observer".www.isro.gov.in. Retrieved17 October 2025.
  28. ^ab"Chandrayaan 2 launched: Here are future ISRO missions to space".The Indian Express. 22 July 2019. Retrieved23 July 2019.
  29. ^abX-ray Polarimeter Experiment (POLIX)Raman Research Institute Accessed on 2 August 2019
  30. ^abGhosh, Sahana (11 September 2023)."India to launch world's second X-ray polarimetry space observatory".Nature India.doi:10.1038/d44151-023-00132-x.
  31. ^"Government of India, Department of Space, Annual Report 2020"(PDF).Archived(PDF) from the original on 14 February 2020.
Organisations
Programmes
Satellites
Space observatories
Lunar and
planetary spacecraft
Human spaceflight
Launch vehicles
Active
In development
Retired
Engines
Active
In development
Spaceports
Research facilities
Communications
Legislation and policy
Private companies
Related
Satellites
Communication
Earth observation
Experimental
Navigation
Student satellites
Aryabhata Satellite
Space probes
Scientific
Astronomical
Lunar programme
Interplanetary
Human
spaceflight
  • Future spacecraft initalics.
Operating
Radio and
Microwave
Infrared
Optical
Ultraviolet
X-ray and
Gamma-ray
Other
(particle or
unclassified)
Planned
Proposed
Retired
Hibernating
(Mission completed)
Lost/Failed
Cancelled
Related
January
February
March
April
May
June
July
August
September
October
November
December
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ).
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).
2024 in space
Space probe launchesSpace probes launched in 2024
Impact events
SelectedNEOs
Discoveries
ExoplanetsExoplanets discovered in 2024
CometsComets in 2024
Retrieved from "https://en.wikipedia.org/w/index.php?title=XPoSat&oldid=1317348299"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp