Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Wrapped exponential distribution

From Wikipedia, the free encyclopedia
Probability distribution
Wrapped Exponential
Probability density function
Plot of the wrapped exponential PDF
The support is chosen to be [0,2π]
Cumulative distribution function
Plot of the wrapped exponential CDF
The support is chosen to be [0,2π]
Parametersλ>0{\displaystyle \lambda >0}
Support0θ<2π{\displaystyle 0\leq \theta <2\pi }
PDFλeλθ1e2πλ{\displaystyle {\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}}
CDF1eλθ1e2πλ{\displaystyle {\frac {1-e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}}
Meanarctan(1/λ){\displaystyle \arctan(1/\lambda )} (circular)
Variance1λ1+λ2{\displaystyle 1-{\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}} (circular)
Entropy1+ln(β1λ)ββ1ln(β){\displaystyle 1+\ln \left({\frac {\beta -1}{\lambda }}\right)-{\frac {\beta }{\beta -1}}\ln(\beta )} whereβ=e2πλ{\displaystyle \beta =e^{2\pi \lambda }} (differential)
CF11in/λ{\displaystyle {\frac {1}{1-in/\lambda }}}

Inprobability theory anddirectional statistics, awrapped exponential distribution is awrapped probability distribution that results from the "wrapping" of theexponential distribution around theunit circle.

Definition

[edit]

Theprobability density function of the wrapped exponential distribution is[1]

fWE(θ;λ)=k=0λeλ(θ+2πk)=λeλθ1e2πλ,{\displaystyle f_{\text{WE}}(\theta ;\lambda )=\sum _{k=0}^{\infty }\lambda e^{-\lambda (\theta +2\pi k)}={\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}},}

for0θ<2π{\displaystyle 0\leq \theta <2\pi } whereλ>0{\displaystyle \lambda >0} is the rate parameter of the unwrapped distribution. This is identical to thetruncated distribution obtained by restricting observed valuesX from theexponential distribution with rate parameterλ to the range0X<2π{\displaystyle 0\leq X<2\pi }. Note that this distribution is not periodic.

Characteristic function

[edit]

Thecharacteristic function of the wrapped exponential is just the characteristic function of the exponential function evaluated at integer arguments:

φn(λ)=11in/λ{\displaystyle \varphi _{n}(\lambda )={\frac {1}{1-in/\lambda }}}

which yields an alternate expression for the wrapped exponential PDF in terms of the circular variablez =ei(θ-m) valid for all realθ andm:

fWE(z;λ)=12πn=zn1in/λ={λπIm(Φ(z,1,iλ))12πif z1λ1e2πλif z=1{\displaystyle {\begin{aligned}f_{\text{WE}}(z;\lambda )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }{\frac {z^{-n}}{1-in/\lambda }}\\[10pt]&={\begin{cases}{\frac {\lambda }{\pi }}\,{\textrm {Im}}(\Phi (z,1,-i\lambda ))-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]{\frac {\lambda }{1-e^{-2\pi \lambda }}}&{\text{if }}z=1\end{cases}}\end{aligned}}}

whereΦ(){\displaystyle \Phi ()} is theLerch transcendent function.

Circular moments

[edit]

In terms of the circular variablez=eiθ{\displaystyle z=e^{i\theta }} the circular moments of the wrapped exponential distribution are the characteristic function of the exponential distribution evaluated at integer arguments:

zn=ΓeinθfWE(θ;λ)dθ=11in/λ,{\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{\text{WE}}(\theta ;\lambda )\,d\theta ={\frac {1}{1-in/\lambda }},}

whereΓ{\displaystyle \Gamma \,} is some interval of length2π{\displaystyle 2\pi }. The first moment is then the average value ofz, also known as the mean resultant, or mean resultant vector:

z=11i/λ.{\displaystyle \langle z\rangle ={\frac {1}{1-i/\lambda }}.}

The mean angle is

θ=Argz=arctan(1/λ),{\displaystyle \langle \theta \rangle =\mathrm {Arg} \langle z\rangle =\arctan(1/\lambda ),}

and the length of the mean resultant is

R=|z|=λ1+λ2.{\displaystyle R=|\langle z\rangle |={\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}.}

and the variance is then 1 −R.

Characterisation

[edit]

The wrapped exponential distribution is themaximum entropy probability distribution for distributions restricted to the range0θ<2π{\displaystyle 0\leq \theta <2\pi } for a fixed value of the expectationE(θ){\displaystyle \operatorname {E} (\theta )}.[1]

See also

[edit]

References

[edit]
  1. ^abJammalamadaka, S. Rao; Kozubowski, Tomasz J. (2004)."New Families of Wrapped Distributions for Modeling Skew Circular Data"(PDF).Communications in Statistics - Theory and Methods.33 (9):2059–2074.doi:10.1081/STA-200026570. Retrieved2011-06-13.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Wrapped_exponential_distribution&oldid=1312062179"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp