Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Wrapped Cauchy distribution

From Wikipedia, the free encyclopedia
Wrapped probability distribution
Wrapped Cauchy
Probability density function
Plot of the wrapped Cauchy PDF, '"`UNIQ--postMath-00000001-QINU`"'
The support is chosen to be [-π,π)
Cumulative distribution function
Plot of the wrapped Cauchy CDF '"`UNIQ--postMath-00000002-QINU`"'
The support is chosen to be [-π,π)
Parametersμ{\displaystyle \mu } Real
γ>0{\displaystyle \gamma >0}
Supportπθ<π{\displaystyle -\pi \leq \theta <\pi }
PDF12πsinh(γ)cosh(γ)cos(θμ){\displaystyle {\frac {1}{2\pi }}\,{\frac {\sinh(\gamma )}{\cosh(\gamma )-\cos(\theta -\mu )}}}
CDF{\displaystyle \,}
Meanμ{\displaystyle \mu } (circular)
Variance1eγ{\displaystyle 1-e^{-\gamma }} (circular)
Entropyln(2π(1e2γ)){\displaystyle \ln(2\pi (1-e^{-2\gamma }))} (differential)
CFeinμ|n|γ{\displaystyle e^{in\mu -|n|\gamma }}

Inprobability theory anddirectional statistics, awrapped Cauchy distribution is awrapped probability distribution that results from the "wrapping" of theCauchy distribution around theunit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

The wrapped Cauchy distribution is often found in the field of spectroscopy where it is used to analyze diffraction patterns (e.g. seeFabry–Pérot interferometer).

Description

[edit]

Theprobability density function of the wrappedCauchy distribution is:[1]

fWC(θ;μ,γ)=n=γπ(γ2+(θμ+2πn)2)π<θ<π{\displaystyle f_{\text{WC}}(\theta ;\mu ,\gamma )=\sum _{n=-\infty }^{\infty }{\frac {\gamma }{\pi (\gamma ^{2}+(\theta -\mu +2\pi n)^{2})}}\qquad -\pi <\theta <\pi }

whereγ{\displaystyle \gamma } is the scale factor andμ{\displaystyle \mu } is the peak position of the "unwrapped" distribution.Expressing the above pdf in terms of thecharacteristic function of the Cauchy distribution yields:

fWC(θ;μ,γ)=12πn=ein(θμ)|n|γ=12πsinhγcoshγcos(θμ){\displaystyle f_{\text{WC}}(\theta ;\mu ,\gamma )={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }e^{in(\theta -\mu )-|n|\gamma }={\frac {1}{2\pi }}\,\,{\frac {\sinh \gamma }{\cosh \gamma -\cos(\theta -\mu )}}}

The PDF may also be expressed in terms of the circular variablez =e and the complex parameterζ =ei(μ+)

fWC(z;ζ)=12π1|ζ|2|zζ|2{\displaystyle f_{\text{WC}}(z;\zeta )={\frac {1}{2\pi }}\,\,{\frac {1-|\zeta |^{2}}{|z-\zeta |^{2}}}}

where, as shown below,ζ = ⟨z⟩.

In terms of the circular variablez=eiθ{\displaystyle z=e^{i\theta }} the circular moments of the wrapped Cauchy distribution are the characteristic function of the Cauchy distribution evaluated at integer arguments:

zn=ΓeinθfWC(θ;μ,γ)dθ=einμ|n|γ.{\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{\text{WC}}(\theta ;\mu ,\gamma )\,d\theta =e^{in\mu -|n|\gamma }.}

whereΓ{\displaystyle \Gamma \,} is some interval of length2π{\displaystyle 2\pi }. The first moment is then the average value ofz, also known as the mean resultant, or mean resultant vector:

z=eiμγ{\displaystyle \langle z\rangle =e^{i\mu -\gamma }}

The mean angle is

θ=Argz=μ{\displaystyle \langle \theta \rangle =\mathrm {Arg} \langle z\rangle =\mu }

and the length of the mean resultant is

R=|z|=eγ{\displaystyle R=|\langle z\rangle |=e^{-\gamma }}

yielding a circular variance of 1 −R.

Estimation of parameters

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(July 2022) (Learn how and when to remove this message)

A series ofN measurementszn=eiθn{\displaystyle z_{n}=e^{i\theta _{n}}} drawn from a wrapped Cauchy distribution may be used to estimate certain parameters of the distribution. The average of the seriesz¯{\displaystyle {\overline {z}}} is defined as

z¯=1Nn=1Nzn{\displaystyle {\overline {z}}={\frac {1}{N}}\sum _{n=1}^{N}z_{n}}

and its expectation value will be just the first moment:

z¯=eiμγ{\displaystyle \langle {\overline {z}}\rangle =e^{i\mu -\gamma }}

In other words,z¯{\displaystyle {\overline {z}}} is an unbiased estimator of the first moment. If we assume that the peak positionμ{\displaystyle \mu } lies in the interval[π,π){\displaystyle [-\pi ,\pi )}, then Arg(z¯){\displaystyle ({\overline {z}})} will be a (biased) estimator of the peak positionμ{\displaystyle \mu }.

Viewing thezn{\displaystyle z_{n}} as a set of vectors in the complex plane, theR¯2{\displaystyle {\overline {R}}^{2}} statistic is the length of the averaged vector:

R¯2=z¯z¯=(1Nn=1Ncosθn)2+(1Nn=1Nsinθn)2{\displaystyle {\overline {R}}^{2}={\overline {z}}\,{\overline {z^{*}}}=\left({\frac {1}{N}}\sum _{n=1}^{N}\cos \theta _{n}\right)^{2}+\left({\frac {1}{N}}\sum _{n=1}^{N}\sin \theta _{n}\right)^{2}}

and its expectation value is

R¯2=1N+N1Ne2γ.{\displaystyle \langle {\overline {R}}^{2}\rangle ={\frac {1}{N}}+{\frac {N-1}{N}}e^{-2\gamma }.}

In other words, the statistic

Re2=NN1(R¯21N){\displaystyle R_{e}^{2}={\frac {N}{N-1}}\left({\overline {R}}^{2}-{\frac {1}{N}}\right)}

will be an unbiased estimator ofe2γ{\displaystyle e^{-2\gamma }}, andln(1/Re2)/2{\displaystyle \ln(1/R_{e}^{2})/2} will be a (biased) estimator ofγ{\displaystyle \gamma }.

Entropy

[edit]

Theinformation entropy of the wrapped Cauchy distribution is defined as:[1]

H=ΓfWC(θ;μ,γ)ln(fWC(θ;μ,γ))dθ{\displaystyle H=-\int _{\Gamma }f_{\text{WC}}(\theta ;\mu ,\gamma )\,\ln(f_{\text{WC}}(\theta ;\mu ,\gamma ))\,d\theta }

whereΓ{\displaystyle \Gamma } is any interval of length2π{\displaystyle 2\pi }. The logarithm of the density of the wrapped Cauchy distribution may be written as aFourier series inθ{\displaystyle \theta \,}:

ln(fWC(θ;μ,γ))=c0+2m=1cmcos(mθ){\displaystyle \ln(f_{\text{WC}}(\theta ;\mu ,\gamma ))=c_{0}+2\sum _{m=1}^{\infty }c_{m}\cos(m\theta )}

where

cm=12πΓln(sinhγ2π(coshγcosθ))cos(mθ)dθ{\displaystyle c_{m}={\frac {1}{2\pi }}\int _{\Gamma }\ln \left({\frac {\sinh \gamma }{2\pi (\cosh \gamma -\cos \theta )}}\right)\cos(m\theta )\,d\theta }

which yields:

c0=ln(1e2γ2π){\displaystyle c_{0}=\ln \left({\frac {1-e^{-2\gamma }}{2\pi }}\right)}

(cf.Gradshteyn and Ryzhik[2] 4.224.15) and

cm=emγmform>0{\displaystyle c_{m}={\frac {e^{-m\gamma }}{m}}\qquad \mathrm {for} \,m>0}

(cf.Gradshteyn and Ryzhik[2] 4.397.6). The characteristic function representation for the wrapped Cauchy distribution in the left side of the integral is:

fWC(θ;μ,γ)=12π(1+2n=1ϕncos(nθ)){\displaystyle f_{\text{WC}}(\theta ;\mu ,\gamma )={\frac {1}{2\pi }}\left(1+2\sum _{n=1}^{\infty }\phi _{n}\cos(n\theta )\right)}

whereϕn=e|n|γ{\displaystyle \phi _{n}=e^{-|n|\gamma }}. Substituting these expressions into the entropy integral, exchanging the order of integration and summation, and using the orthogonality of the cosines, the entropy may be written:

H=c02m=1ϕmcm=ln(1e2γ2π)2m=1e2nγn{\displaystyle H=-c_{0}-2\sum _{m=1}^{\infty }\phi _{m}c_{m}=-\ln \left({\frac {1-e^{-2\gamma }}{2\pi }}\right)-2\sum _{m=1}^{\infty }{\frac {e^{-2n\gamma }}{n}}}

The series is just theTaylor expansion for the logarithm of(1e2γ){\displaystyle (1-e^{-2\gamma })} so the entropy may be written inclosed form as:

H=ln(2π(1e2γ)){\displaystyle H=\ln(2\pi (1-e^{-2\gamma }))\,}

Circular Cauchy distribution

[edit]

IfX is Cauchy distributed with medianμ and scale parameterγ, then the complex variable

Z=XiX+i{\displaystyle Z={\frac {X-i}{X+i}}}

has unit modulus and is distributed on the unit circle with density:[3]

fCC(θ,μ,γ)=12π1|ζ|2|eiθζ|2{\displaystyle f_{\text{CC}}(\theta ,\mu ,\gamma )={\frac {1}{2\pi }}{\frac {1-|\zeta |^{2}}{|e^{i\theta }-\zeta |^{2}}}}

where

ζ=ψiψ+i{\displaystyle \zeta ={\frac {\psi -i}{\psi +i}}}

andψ expresses the two parameters of the associated linear Cauchy distribution forx as acomplex number:

ψ=μ+iγ{\displaystyle \psi =\mu +i\gamma \,}

It can be seen that the circular Cauchy distribution has the same functional form as the wrapped Cauchy distribution inz and ζ (i.e.fWC(z,ζ)). The circular Cauchy distribution is a reparameterized wrapped Cauchy distribution:

fCC(θ,m,γ)=fWC(eiθ,m+iγim+iγ+i){\displaystyle f_{\text{CC}}(\theta ,m,\gamma )=f_{\text{WC}}\left(e^{i\theta },\,{\frac {m+i\gamma -i}{m+i\gamma +i}}\right)}

The distributionfCC(θ;μ,γ){\displaystyle f_{\text{CC}}(\theta ;\mu ,\gamma )} is called the circular Cauchy distribution[3][4] (also the complex Cauchy distribution[3]) with parametersμ andγ. (See alsoMcCullagh's parametrization of the Cauchy distributions andPoisson kernel for related concepts.)

The circular Cauchy distribution expressed in complex form has finite moments of all orders

E[Zn]=ζn,E[Z¯n]=ζ¯n{\displaystyle \operatorname {E} [Z^{n}]=\zeta ^{n},\quad \operatorname {E} [{\bar {Z}}^{n}]={\bar {\zeta }}^{n}}

for integern ≥ 1. For |φ| < 1, the transformation

U(z,ϕ)=zϕ1ϕ¯z{\displaystyle U(z,\phi )={\frac {z-\phi }{1-{\bar {\phi }}z}}}

isholomorphic on the unit disk, and the transformed variableU(Z,φ) is distributed as complex Cauchy with parameterU(ζ,φ).

Given a samplez1, ...,zn of sizen > 2, the maximum-likelihood equation

n1U(z,ζ^)=n1U(zj,ζ^)=0{\displaystyle n^{-1}U\left(z,{\hat {\zeta }}\right)=n^{-1}\sum U\left(z_{j},{\hat {\zeta }}\right)=0}

can be solved by a simple fixed-point iteration:

ζ(r+1)=U(n1U(z,ζ(r)),ζ(r)){\displaystyle \zeta ^{(r+1)}=U\left(n^{-1}U(z,\zeta ^{(r)}),\,-\zeta ^{(r)}\right)\,}

starting withζ(0) = 0. The sequence of likelihood values is non-decreasing, and the solution is unique for samples containing at least three distinct values.[5]

The maximum-likelihood estimate for the median (μ^{\displaystyle {\hat {\mu }}}) and scale parameter (γ^{\displaystyle {\hat {\gamma }}}) of a real Cauchy sample is obtained by the inverse transformation:

μ^±iγ^=i1+ζ^1ζ^.{\displaystyle {\hat {\mu }}\pm i{\hat {\gamma }}=i{\frac {1+{\hat {\zeta }}}{1-{\hat {\zeta }}}}.}

Forn ≤ 4, closed-form expressions are known forζ^{\displaystyle {\hat {\zeta }}}.[6] The density of the maximum-likelihood estimator att in the unit disk is necessarily of the form:

14πpn(χ(t,ζ))(1|t|2)2,{\displaystyle {\frac {1}{4\pi }}{\frac {p_{n}(\chi (t,\zeta ))}{(1-|t|^{2})^{2}}},}

where

χ(t,ζ)=|tζ|24(1|t|2)(1|ζ|2){\displaystyle \chi (t,\zeta )={\frac {|t-\zeta |^{2}}{4(1-|t|^{2})(1-|\zeta |^{2})}}}.

Formulae forp3 andp4 are available.[7]

See also

[edit]

References

[edit]
  1. ^abMardia, Kantilal; Jupp, Peter E. (1999).Directional Statistics. Wiley.ISBN 978-0-471-95333-3.
  2. ^abGradshteyn, Izrail Solomonovich;Ryzhik, Iosif Moiseevich;Geronimus, Yuri Veniaminovich;Tseytlin, Michail Yulyevich (February 2007). Jeffrey, Alan; Zwillinger, Daniel (eds.).Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (7 ed.).Academic Press, Inc.ISBN 0-12-373637-4.LCCN 2010481177.
  3. ^abcMcCullagh, Peter (June 1992)."Conditional inference and Cauchy models"(PDF).Biometrika.79 (2):247–259.doi:10.1093/biomet/79.2.247. Retrieved26 January 2016.
  4. ^K.V. Mardia (1972).Statistics of Directional Data.Academic Press.[page needed]
  5. ^J. Copas (1975). "On the unimodality of the likelihood function for the Cauchy distribution".Biometrika.62 (3):701–704.doi:10.1093/biomet/62.3.701.
  6. ^Ferguson, Thomas S. (1978). "Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4".Journal of the American Statistical Association.73 (361):211–213.doi:10.1080/01621459.1978.10480031.JSTOR 2286549.
  7. ^P. McCullagh (1996). "Möbius transformation and Cauchy parameter estimation".Annals of Statistics.24 (2):786–808.doi:10.1214/aos/1032894465.JSTOR 2242674.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Wrapped_Cauchy_distribution&oldid=1311915255"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp