Inquantum field theory,Wilson loops aregauge invariant operators arising from theparallel transport of gauge variables around closedloops. They encode all gauge information of the theory, allowing for the construction ofloop representations which fully describegauge theories in terms of these loops. In pure gauge theory they play the role oforder operators forconfinement, where they satisfy what is known as the area law. Originally formulated byKenneth G. Wilson in 1974, they were used to construct links and plaquettes which are the fundamental parameters inlattice gauge theory.[1] Wilson loops fall into the broader class of loopoperators, with some other notable examples being't Hooft loops, which are magnetic duals to Wilson loops, andPolyakov loops, which are the thermal version of Wilson loops.

To properly define Wilson loops in gauge theory requires considering thefiber bundle formulation of gauge theories.[2] Here for each point in the-dimensionalspacetime there is a copy of the gauge group forming what's known as a fiber of thefiber bundle. These fiber bundles are calledprincipal bundles. Locally the resulting space looks like although globally it can have some twisted structure depending on how different fibers are glued together.
The issue that Wilson lines resolve is how to compare points on fibers at two different spacetime points. This is analogous to parallel transport ingeneral relativity which comparestangent vectors that live in thetangent spaces at different points. For principal bundles there is a natural way to compare different fiber points through the introduction of aconnection, which is equivalent to introducing a gauge field. This is because a connection is a way to separate out the tangent space of the principal bundle into two subspaces known as thevertical and horizontal subspaces.[3] The former consists of all vectors pointing along the fiber while the latter consists of vectors that are perpendicular to the fiber. This allows for the comparison of fiber values at different spacetime points by connecting them with curves in the principal bundle whose tangent vectors always live in the horizontal subspace, so the curve is always perpendicular to any given fiber.
If the starting fiber is at coordinate with a starting point of the identity, then to see how this changes when moving to another spacetime coordinate, one needs to consider some spacetime curve between and. The corresponding curve in the principal bundle, known as thehorizontal lift of, is the curve such that and that its tangent vectors always lie in the horizontal subspace. The fiber bundle formulation of gauge theory reveals that theLie-algebra valued gauge field is equivalent to the connection that defines the horizontal subspace, so this leads to adifferential equation for the horizontal lift
This has a unique formal solution called theWilson line between the two points
where is thepath-ordering operator, which is unnecessary forabelian theories. The horizontal lift starting at some initial fiber point other than the identity merely requires multiplication by the initial element of the original horizontal lift. More generally, it holds that if then for all.
Under alocal gauge transformation the Wilson line transforms as
This gauge transformation property is often used to directly introduce the Wilson line in the presence of matter fields transforming in thefundamental representation of the gauge group, where the Wilson line is an operator that makes the combination gauge invariant.[4] It allows for the comparison of the matter field at different points in a gauge invariant way. Alternatively, the Wilson lines can also be introduced by adding an infinitely heavytest particle charged under the gauge group. Its charge forms a quantized internalHilbert space, which can be integrated out, yielding the Wilson line as the world-line of the test particle.[5] This works in quantum field theory whether or not there actually is any matter content in the theory. However, theswampland conjecture known as the completeness conjecture claims that in a consistent theory ofquantum gravity, every Wilson line and 't Hooft line of a particular charge consistent with theDirac quantization condition must have a corresponding particle of that charge be present in the theory.[6] Decoupling these particles by taking the infinite mass limit no longer works since this would formblack holes.
Thetrace of closed Wilson lines is a gauge invariant quantity known as theWilson loop
Mathematically the term within the trace is known as theholonomy, which describes amapping of the fiber into itself upon horizontal lift along a closed loop. The set of all holonomies itself forms agroup, which for principal bundles must be asubgroup of the gauge group. Wilson loops satisfy the reconstruction property where knowing the set of Wilson loops for all possible loops allows for the reconstruction of all gauge invariant information about the gauge connection.[7] Formally the set of all Wilson loops forms anovercompletebasis of solutions to the Gauss' law constraint.
The set of all Wilson lines is inone-to-one correspondence with therepresentations of the gauge group. This can be reformulated in terms of Lie algebra language using theweight lattice of the gauge group. In this case the types of Wilson loops are in one-to-one correspondence with where is theWeyl group.[8]
An alternative view of Wilson loops is to consider them as operators acting on the Hilbert space of states inMinkowski signature.[5] Since the Hilbert space lives on a single time slice, the only Wilson loops that can act as operators on this space are ones formed usingspacelike loops. Such operators create a closed loop ofelectric flux, which can be seen by noting that theelectric field operator is nonzero on the loop but it vanishes everywhere else. UsingStokes theorem it follows that the spatial loop measures themagnetic flux through the loop.[9]
Since temporal Wilson lines correspond to the configuration created by infinitely heavy stationary quarks, Wilson loop associated with a rectangular loop with two temporal components of length and two spatial components of length, can be interpreted as aquark-antiquark pair at fixed separation. Over large times thevacuum expectation value of the Wilson loop projects out the state with theminimum energy, which is thepotential between the quarks.[10] Theexcited states with energy are exponentially suppressed with time and so the expectation value goes as
making the Wilson loop useful for calculating the potential between quark pairs. This potential must necessarily be amonotonically increasing andconcave function of the quark separation.[11][12] Since spacelike Wilson loops are not fundamentally different from the temporal ones, the quark potential is really directly related to the pure Yang–Mills theory structure and is a phenomenon independent of the matter content.[13]
Elitzur's theorem ensures that local non-gauge invariant operators cannot have a non-zero expectation values. Instead one must use non-local gauge invariant operators as order parameters for confinement. The Wilson loop is exactly such an order parameter in pureYang–Mills theory, where in the confiningphase its expectation value follows the area law[14]
for a loop that encloses an area. This is motivated from the potential between infinitely heavy test quarks which in the confinement phase is expected to grow linearly where is known as the string tension. Meanwhile, in theHiggs phase the expectation value follows the perimeter law
where is the perimeter length of the loop and is some constant. The area law of Wilson loops can be used to demonstrate confinement in certain low dimensional theories directly, such as for theSchwinger model whose confinement is driven byinstantons.[15]
Inlattice field theory, Wilson lines and loops play a fundamental role in formulating gauge fields on thelattice. The smallest Wilson lines on the lattice, those between two adjacent lattice points, are known as links, with a single link starting from a lattice point going in the direction denoted by. Four links around a single square are known as a plaquette, with their trace forming the smallest Wilson loop.[16] It is these plaquettes that are used to construct the lattice gauge action known as theWilson action. Larger Wilson loops are expressed as products of link variables along some loop, denoted by[17]
These Wilson loops are used to study confinement and quark potentialsnumerically.Linear combinations of Wilson loops are also used as interpolating operators that give rise toglueball states.[18] The glueball masses can then be extracted from thecorrelation function between these interpolators.[19]
The lattice formulation of the Wilson loops also allows for an analytic demonstration of confinement in thestrongly coupled phase, assuming thequenched approximation where quark loops are neglected.[20] This is done by expanding out the Wilson action as apower series of traces of plaquettes, where the first non-vanishing term in the expectation value of the Wilson loop in an gauge theory gives rise to an area law with a string tension of the form[21][22]
where is the inverse coupling constant and is the lattice spacing. While this argument holds for both the abelian and non-abelian case, compactelectrodynamics only exhibits confinement at strong coupling, with there being aphase transition to the Coulomb phase at, leaving the theory deconfined at weak coupling.[23][24] Such a phase transition is not believed to exist for gauge theories atzero temperature, instead they exhibit confinement at all values of the coupling constant.
Similarly to thefunctional derivative which acts onfunctions of functions, functions of loops admit two types ofderivatives called the area derivative and the perimeter derivative. To define the former, consider a contour and another contour which is the same contour but with an extra small loop at in the- plane with area. Then the area derivative of the loop functional is defined through the same idea as the usual derivative, as the normalized difference between the functional of the two loops[25]
The perimeter derivative is similarly defined whereby now is a slight deformation of the contour which at position has a small extruding loop of length in the direction and of zero area. The perimeter derivative of the loop functional is then defined as
In thelarge N-limit, the Wilson loop vacuum expectation value satisfies a closed functional form equation called theMakeenko–Migdal equation[26]
Here with being a line that does not close from to, with the two points however close to each other. The equation can also be written for finite, but in this case it does not factorize and instead leads to expectation values of products of Wilson loops, rather than the product of their expectation values.[27] This gives rise to an infinite chain of coupled equations for different Wilson loop expectation values, analogous to theSchwinger–Dyson equations. The Makeenko–Migdal equation has been solved exactly in two dimensional theory.[28]
Gauge groups that admit fundamental representations in terms of matrices have Wilson loops that satisfy a set of identities called theMandelstam identities, with these identities reflecting the particular properties of the underlying gauge group.[29] The identities apply to loops formed from two or more subloops, with being a loop formed by first going around and then going around.
The Mandelstam identity of the first kind states that, with this holding for any gauge group in any dimension. Mandelstam identities of the second kind are acquired by noting that in dimensions, any object withtotally antisymmetric indices vanishes, meaning that. In the fundamental representation, the holonomies used to form the Wilson loops arematrix representations of the gauge groups. Contracting holonomies with thedelta functions yields a set of identities between Wilson loops. These can be written in terms the objects defined iteratively so that and
In this notation the Mandelstam identities of the second kind are[30]
For example, for a gauge group this gives.
If the fundamental representation are matrices of unitdeterminant, then it also holds that. For example, applying this identity to gives
Fundamental representations consisting ofunitary matrices satisfy. Furthermore, while the equality holds for all gauge groups in the fundamental representations, for unitary groups it moreover holds that.
Since Wilson loops are operators of the gauge fields, theregularization andrenormalization of the underlying Yang–Mills theory fields and couplings does not prevent the Wilson loops from requiring additional renormalization corrections. In a renormalized Yang–Mills theory, the particular way that the Wilson loops get renormalized depends on the geometry of the loop under consideration. The main features are[31][32][33][34]
Wilson loops play a role in the theory ofscattering amplitudes where a set of dualities between them and special types of scattering amplitudes has been found.[35] These have first been suggested at strong coupling using theAdS/CFT correspondence.[36] For example, insupersymmetric Yang–Mills theorymaximally helicity violating amplitudes factorize into a tree-level component and a loop level correction.[37] This loop level correction does not depend on thehelicities of the particles, but it was found to be dual to certain polygonal Wilson loops in the large limit, up to finite terms. While this duality was initially only suggested in the maximum helicity violating case, there are arguments that it can be extended to all helicity configurations by defining appropriatesupersymmetric generalizations of the Wilson loop.[38]
Incompactified theories, zero mode gauge field states that are locally pure gauge configurations but are globally inequivalent to the vacuum are parameterized by closed Wilson lines in the compact direction. The presence of these on a compactifiedopenstring theory is equivalent underT-duality to a theory with non-coincidentD-branes, whose separations are determined by the Wilson lines.[39] Wilson lines also play a role inorbifold compactifications where their presence leads to greater control of gaugesymmetry breaking, giving a better handle on the final unbroken gauge group and also providing a mechanism for controlling the number of matter multiplets left after compactification.[40] These properties make Wilson lines important in compactifications of superstring theories.[41][42]
In atopological field theory, the expectation value of Wilson loops does not change under smooth deformations of the loop since the field theory does not depend on themetric.[43] For this reason, Wilson loops are keyobservables in these theories and are used to calculate global properties of the spacetimemanifold. In dimensions they are closely related toknot theory with the expectation value of a product of loops depending only on the manifold structure and on how the loops are tied together. This led to the famous connection made byEdward Witten where he used Wilson loops inChern–Simons theory to relate theirpartition function toJones polynomials of knot theory.[44]