Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Wigner–Seitz radius

From Wikipedia, the free encyclopedia

TheWigner–Seitz radiusrs{\displaystyle r_{\rm {s}}}, named afterEugene Wigner andFrederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals).[1] In the more general case of metals having more valence electrons,rs{\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the volume per a free electron.[2] This parameter is used frequently incondensed matter physics to describe the density of a system. Worth to mention,rs{\displaystyle r_{\rm {s}}} is calculated for bulk materials.

Formula

[edit]

In a 3-D system withN{\displaystyle N} free valence electrons in a volumeV{\displaystyle V}, the Wigner–Seitz radius is defined by

43πrs3=VN=1n,{\displaystyle {\frac {4}{3}}\pi r_{\rm {s}}^{3}={\frac {V}{N}}={\frac {1}{n}}\,,}

wheren{\displaystyle n} is theparticle density. Solving forrs{\displaystyle r_{\rm {s}}} we obtain

rs=(34πn)1/3.{\displaystyle r_{\rm {s}}=\left({\frac {3}{4\pi n}}\right)^{1/3}.}

The radius can also be calculated as

rs=(3M4πρNVNA)13,{\displaystyle r_{\rm {s}}=\left({\frac {3M}{4\pi \rho N_{V}N_{\rm {A}}}}\right)^{\frac {1}{3}}\,,}

whereM{\displaystyle M} ismolar mass,NV{\displaystyle N_{V}} is count of free valence electrons per particle,ρ{\displaystyle \rho } ismass density andNA{\displaystyle N_{\rm {A}}} is theAvogadro constant.

This parameter is normally reported inatomic units, i.e., in units of theBohr radius.

Assuming that each atom in a simple metal cluster occupies the same volume as in a solid, the radius of the cluster is given by

R0=rsn1/3{\displaystyle R_{0}=r_{s}n^{1/3}}

wheren is the number of atoms.[3][4]

Values ofrs{\displaystyle r_{\rm {s}}} for the first group metals:[2]

Elementrs/a0{\displaystyle r_{\rm {s}}/a_{0}}
Li3.25
Na3.93
K4.86
Rb5.20
Cs5.62

Wigner–Seitz radius is related to the electronic density by the formula

rs=0.62035ρ1/3{\displaystyle r_{s}=0.62035\rho ^{1/3}}

where,ρ can be regarded as the average electronic density in the outer portion of the Wigner-Seitz cell.[5]

See also

[edit]

References

[edit]
  1. ^Girifalco, Louis A. (2003).Statistical mechanics of solids. Oxford: Oxford University Press. p. 125.ISBN 978-0-19-516717-7.
  2. ^ab*Ashcroft, Neil W.; Mermin, N. David (1976).Solid State Physics.Holt, Rinehart and Winston.ISBN 0-03-083993-9.
  3. ^Bréchignac, Catherine; Houdy, Philippe; Lahmani, Marcel, eds. (2007).Nanomaterials and nanochemistry. Berlin Heidelberg: Springer.ISBN 978-3-540-72992-1.
  4. ^"Radius of Cluster using Wigner Seitz Radius Calculator | Calculate Radius of Cluster using Wigner Seitz Radius".www.calculatoratoz.com. Retrieved2024-05-28.
  5. ^Politzer, Peter; Parr, Robert G.; Murphy, Danny R. (1985-05-15)."Approximate determination of Wigner-Seitz radii from free-atom wave functions".Physical Review B.31 (10):6809–6810.Bibcode:1985PhRvB..31.6809P.doi:10.1103/PhysRevB.31.6809.ISSN 0163-1829.PMID 9935571.


Stub icon

Thisatomic, molecular, and optical physics–related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Wigner–Seitz_radius&oldid=1320355470"
Categories:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp