Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Whitening transformation

From Wikipedia, the free encyclopedia
Classification algorithm

Awhitening transformation orsphering transformation is alinear transformation that transforms a vector ofrandom variables with a knowncovariance matrix into a set of new variables whose covariance is theidentity matrix, meaning that they areuncorrelated and each havevariance 1.[1] The transformation is called "whitening" because it changes the input vector into awhite noise vector.

Several other transformations are closely related to whitening:

  1. thedecorrelation transform removes only the correlations but leaves variances intact,
  2. thestandardization transform sets variances to 1 but leaves correlations intact,
  3. acoloring transformation transforms a vector of white random variables into a random vector with a specified covariance matrix.[2]

Definition

[edit]

SupposeX{\displaystyle X} is arandom (column) vector with non-singular covariance matrixΣ{\displaystyle \Sigma } and mean0{\displaystyle 0}. Then the transformationY=WX{\displaystyle Y=WX} with awhitening matrixW{\displaystyle W} satisfying the conditionWTW=Σ1{\displaystyle W^{\mathrm {T} }W=\Sigma ^{-1}} yields the whitened random vectorY{\displaystyle Y} with unit diagonal covariance.

IfX{\displaystyle X} has non-zero meanμ{\displaystyle \mu }, then whitening can be performed byY=W(Xμ){\displaystyle Y=W(X-\mu )}.

There are infinitely many possible whitening matricesW{\displaystyle W} that all satisfy the above condition. Commonly used choices areW=Σ1/2{\displaystyle W=\Sigma ^{-1/2}} (Mahalanobis or ZCA whitening),W=LT{\displaystyle W=L^{T}} whereL{\displaystyle L} is theCholesky decomposition ofΣ1{\displaystyle \Sigma ^{-1}} (Cholesky whitening),[3] or the eigen-system ofΣ{\displaystyle \Sigma } (PCA whitening).[4]

Optimal whitening transforms can be singled out by investigating the cross-covariance and cross-correlation ofX{\displaystyle X} andY{\displaystyle Y}.[3] For example, the unique optimal whitening transformation achieving maximal component-wise correlation between originalX{\displaystyle X} and whitenedY{\displaystyle Y} is produced by the whitening matrixW=P1/2V1/2{\displaystyle W=P^{-1/2}V^{-1/2}} whereP{\displaystyle P} is the correlation matrix andV{\displaystyle V} the diagonal variance matrix.

Whitening a data matrix

[edit]

Whitening a data matrix follows the same transformation as for random variables. An empirical whitening transform is obtained byestimating the covariance (e.g. bymaximum likelihood) and subsequently constructing a corresponding estimated whitening matrix (e.g. byCholesky decomposition).

High-dimensional whitening

[edit]

This modality is a generalization of the pre-whitening procedure extended to more general spaces whereX{\displaystyle X} is usually assumed to be a random function or other random objects in aHilbert spaceH{\displaystyle H}. One of the main issues of extending whitening to infinite dimensions is that thecovariance operator has an unbounded inverse inH{\displaystyle H}, therefore only partial standardization is possible in infinite dimensions. A whitening operator can be then defined from the factorization of a degenerated covariance operator. High-dimensional features of the data can be exploited through kernel regressors or basis function systems.[5]

R implementation

[edit]

An implementation of several whitening procedures inR, including ZCA-whitening and PCA whitening but alsoCCA whitening, is available in the "whitening" R package[6] published onCRAN. The R package "pfica"[7] allows the computation of high-dimensional whitening representations using basis function systems (B-splines,Fourier basis, etc.).

See also

[edit]

References

[edit]
  1. ^Koivunen, A.C.; Kostinski, A.B. (1999)."The Feasibility of Data Whitening to Improve Performance of Weather Radar".Journal of Applied Meteorology.38 (6):741–749.Bibcode:1999JApMe..38..741K.doi:10.1175/1520-0450(1999)038<0741:TFODWT>2.0.CO;2.ISSN 1520-0450.
  2. ^Hossain, Miliha."Whitening and Coloring Transforms for Multivariate Gaussian Random Variables". Project Rhea. Retrieved21 March 2016.
  3. ^abKessy, A.; Lewin, A.; Strimmer, K. (2018). "Optimal whitening and decorrelation".The American Statistician.72 (4):309–314.arXiv:1512.00809.doi:10.1080/00031305.2016.1277159.S2CID 55075085.
  4. ^Friedman, J. (1987)."Exploratory Projection Pursuit"(PDF).Journal of the American Statistical Association.82 (397):249–266.doi:10.1080/01621459.1987.10478427.ISSN 0162-1459.JSTOR 2289161.OSTI 1447861.
  5. ^Ramsay, J.O.; Silverman, J.O. (2005).Functional Data Analysis. Springer New York, NY.doi:10.1007/b98888.ISBN 978-0-387-40080-8.
  6. ^"whitening R package". Retrieved2018-11-25.
  7. ^"pfica R package". 6 January 2023. Retrieved2023-02-11.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Whitening_transformation&oldid=1308215080"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp