Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Water resources

Page semi-protected
From Wikipedia, the free encyclopedia
Sources of water that are potentially useful for humans
This article is about all types of waters that are of potential use to humans. For a naturally occurring type of water resource that humans use a lot, seeFresh water.
Distribution of freshwater resources by type[1]
  1. Glaciers (69.0%)
  2. Groundwater (30.0%)
  3. Other freshwater (e.g. soil moisture) (0.70%)
  4. Directly accessible water (0.30%)

Water resources arenatural resources ofwater that are potentially useful for humans, for example as a source of drinkingwater supply orirrigation water. These resources can be eitherfreshwater from natural sources, or water produced artificially from other sources, such as fromreclaimed water (wastewater) ordesalinated water (seawater). 97% of the water on Earth issalt water and only three percent isfresh water; slightly over two-thirds of this is frozen inglaciers andpolarice caps.[2] The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air.[3] Natural sources offresh water includefrozen water,groundwater,surface water, and under river flow. People use water resources foragricultural,household, andindustrial activities.

Water resources are under threat from multiple issues. There iswater scarcity,water pollution,water conflict andclimate change. Fresh water is in principle arenewable resource. However, the world's supply ofgroundwater is steadily decreasing. Groundwater depletion (oroverdrafting) is occurring for example in Asia, South America and North America.

Natural sources of fresh water

Further information:Water distribution on Earth

Natural sources offresh water includesurface water, under river flow,groundwater andfrozen water.

Surface water

Main article:Surface water
Lake Chungará andParinacota volcano in northern Chile

Surface water is water in a river,lake or fresh waterwetland. Surface water is naturally replenished byprecipitation and naturally lost through discharge to theoceans,evaporation,evapotranspiration andgroundwater recharge. The only natural input to any surface water system is precipitation within itswatershed. The total quantity of water in that system at any given time is also dependent on many other factors. These factors include storage capacity in lakes, wetlands and artificialreservoirs, the permeability of thesoil beneath these storage bodies, therunoff characteristics of the land in the watershed, the timing of the precipitation and local evaporation rates. All of these factors also affect the proportions of water loss.

Humans often increase storage capacity by constructing reservoirs and decrease it by draining wetlands. Humans often increase runoff quantities and velocities by paving areas and channelizing the stream flow.

Natural surface water can be augmented by importing surface water from another watershed through acanal orpipeline.

Brazil is estimated to have the largest supply of fresh water in the world, followed byRussia andCanada.[4]

Water from glaciers

Glacier runoff is considered to be surface water. The Himalayas, which are often called "The Roof of the World", contain some of the most extensive and rough high altitude areas on Earth as well as the greatest area of glaciers and permafrost outside of the poles. Ten of Asia's largest rivers flow from there, and more than a billion people's livelihoods depend on them. To complicate matters, temperatures there are rising more rapidly than the global average. In Nepal, the temperature has risen by 0.6 degrees Celsius over the last decade, whereas globally, the Earth has warmed approximately 0.7 degrees Celsius over the last hundred years.[5]

Groundwater

Relative groundwater travel times in the subsurface
This section is an excerpt fromGroundwater.[edit]

Groundwater is thewater present beneathEarth's surface in rock andsoil pore spaces and in thefractures ofrock formations. About 30 percent of all readily availablefresh water in the world is groundwater.[6] A unit of rock or an unconsolidated deposit is called anaquifer when it can yield a usable quantity of water. The depth at whichsoil pore spaces orfractures and voids in rock become completely saturated with water is called thewater table. Groundwater isrecharged from the surface; it may discharge from the surface naturally atsprings andseeps, and can formoases orwetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extractionwells. The study of the distribution and movement of groundwater ishydrogeology, also called groundwaterhydrology.

Typically, groundwater is thought of as water flowing through shallow aquifers, but, in the technical sense, it can also containsoil moisture,permafrost (frozen soil), immobile water in very low permeabilitybedrock, and deepgeothermal oroil formation water. Groundwater is hypothesized to providelubrication that can possibly influence the movement offaults. It is likely that much ofEarth's subsurface contains some water, which may be mixed with other fluids in some instances.

Under river flow

Throughout the course of a river, the total volume of water transported downstream will often be a combination of the visible free water flow together with a substantial contribution flowing through rocks and sediments that underlie the river and its floodplain called thehyporheic zone. For many rivers in large valleys, this unseen component of flow may greatly exceed the visible flow. The hyporheic zone often forms a dynamic interface between surface water and groundwater from aquifers, exchanging flow between rivers and aquifers that may be fully charged or depleted. This is especially significant inkarst areas where pot-holes and underground rivers are common.

Artificial sources of usable water

There are several artificial sources of fresh water. One istreated wastewater (reclaimed water). Another isatmospheric water generators.[7][8][9]Desalinated seawater is another important source. It is important to consider the economic and environmental side effects of these technologies.[10]

Wastewater reuse

This section is an excerpt fromReclaimed water.[edit]

Water reclamation is the process of convertingmunicipal wastewater or sewage andindustrial wastewater into water that can bereused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may includeirrigation of gardens and agricultural fields or replenishingsurface water andgroundwater. This latter is also known asgroundwater recharge. Reused water also serve various needs in residences such astoilet flushing, businesses, and industry. It is possible to treat wastewater to reachdrinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical.[11] Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so inarid countries. Reusing wastewater as part of sustainablewater management allows water to remain an alternative water source for human activities. This can reducescarcity. It also eases pressures on groundwater and other natural water bodies.[12]

There are several technologies used to treat wastewater for reuse. A combination of these technologies can meet strict treatment standards and make sure that the processed water is hygienically safe, meaning free frompathogens. The following are some of the typical technologies:Ozonation,ultrafiltration,aerobic treatment (membrane bioreactor),forward osmosis,reverse osmosis, andadvanced oxidation,[13] oractivated carbon.[14] Some water-demanding activities do not require high grade water. In this case, wastewater can be reused with little or no treatment.

Desalinated water

This section is an excerpt fromDesalination.[edit]

Desalination is a process that removes mineral components fromsaline water. More generally, desalination is the removal of salts and minerals from a substance.[15] One example issoil desalination. This is important for agriculture. It is possible to desalinate saltwater, especiallysea water, to produce water for human consumption or irrigation, producingbrine as a by-product.[16] Many seagoing ships andsubmarines use desalination. Modern interest in desalination mostly focuses on cost-effective provision offresh water for human use. Along with recycledwastewater, it is one of the few water resources independent of rainfall.[17]

Due to its energy consumption, desalinating sea water is generally more costly than fresh water fromsurface water orgroundwater,water recycling andwater conservation; however, these alternatives are not always available and depletion of reserves is a critical problem worldwide.[18][19][20] Desalination processes are using either thermal methods (in the case ofdistillation) or membrane-based methods (e.g. in the case ofreverse osmosis).[21][22]: 24 

Research into other options

Schematic illustration of a proposed approach for capturing moisture above the ocean surface and transporting it to proximal land for improvingwater security[23]

Researchers proposed air capture over oceans which would "significantly increasing freshwater through thecapture of humid air over oceans" to address present and, especially, future water scarcity/insecurity.[24][23]

A 2021 study proposed hypothetical portable solar-poweredatmospheric water harvesting devices. However, suchoff-the-grid generation may sometimes "undermine efforts to developpermanent piped infrastructure" among other problems.[25][26][27]

Water uses

Total renewable freshwater resources of the world, in mm/year (1 mm is equivalent to 1 L of water per m2) (long-term average for the years 1961–1990). Resolution is 0.5° longitude x 0.5° latitude (equivalent to 55 km x 55 km at the equator). Computed by the global freshwater modelWaterGAP.
Map of water stress and spatial variability of water yield along the delineated near-offshore region of 200 km across the world[23]

The total quantity of water available at any given time is an important consideration. Some human water users have an intermittent need for water. For example, manyfarms require large quantities of water in the spring, and no water at all in the winter. Other users have a continuous need for water, such as apower plant that requires water for cooling. Over the long term the average rate of precipitation within a watershed is the upper bound for average consumption of natural surface water from that watershed.

Agriculture and other irrigation

Further information:Sustainable Water and Innovative Irrigation Management
This section is an excerpt fromIrrigation.[edit]
Irrigation of agricultural fields inAndalusia, Spain. Irrigation canal on the left.

Irrigation is the practice of applying controlled amounts ofwater toland to help growcrops,landscape plants, andlawns. Irrigation has been a key aspect ofagriculture for over 5,000 years and has been developed by many cultures around the world. Irrigation helps to grow crops, maintain landscapes, andrevegetate disturbed soils in dry areas and during times of below-average rainfall. In addition to these uses, irrigation is also employed to protect crops fromfrost,[28] suppressweed growth ingrain fields, and preventsoil consolidation. It is also used to coollivestock, reducedust, dispose ofsewage, and supportmining operations.Drainage, which involves the removal of surface and sub-surface water from a given location, is often studied in conjunction with irrigation.

Several methods of irrigation differ in how water is supplied to plants.Surface irrigation, also known as gravity irrigation, is the oldest form of irrigation and has been in use for thousands of years. Insprinkler irrigation, water is piped to one or more central locations within the field and distributed by overhead high-pressure water devices.Micro-irrigation is a system that distributes water under low pressure through a piped network and applies it as a small discharge to each plant. Micro-irrigation uses less pressure and water-flow than sprinkler irrigation.Drip irrigation delivers water directly to the root zone of plants.Subirrigation has been used in field crops in areas with high water tables for many years. It involves artificially raising the water table to moisten the soil below the root zone of plants.

Industries

See also:Industrial water treatment andIndustrial wastewater treatment

It is estimated that 22% of worldwide water is used inindustry.[29] Major industrial users includehydroelectric dams,thermoelectric power plants, which use water forcooling,ore andoil refineries, which use water inchemical processes, and manufacturing plants, which use water as asolvent. Water withdrawal can be very high for certain industries, but consumption is generally much lower than that of agriculture.

Water is used inrenewable power generation.Hydroelectric power derives energy from the force of water flowing downhill, driving a turbine connected to a generator. Thishydroelectricity is a low-cost, non-polluting, renewable energy source. Significantly, hydroelectric power can also be used forload following unlike most renewable energy sources which areintermittent. Ultimately, the energy in a hydroelectric power plant is supplied by the sun. Heat from the sun evaporates water, which condenses as rain in higher altitudes and flows downhill.Pumped-storage hydroelectric plants also exist, which use grid electricity to pump water uphill when demand is low, and use the stored water to produce electricity when demand is high.

Thermoelectric power plants usingcooling towers have high consumption, nearly equal to their withdrawal, as most of the withdrawn water is evaporated as part of the cooling process. The withdrawal, however, is lower than inonce-through cooling systems.

Water is also used in many large scale industrial processes, such as thermoelectric power production, oil refining,fertilizer production and otherchemical plant use, andnatural gas extraction fromshale rock. Discharge of untreated water from industrial uses ispollution. Pollution includes discharged solutes and increased water temperature (thermal pollution).

Drinking water and domestic use (households)

Main articles:Water supply,Drinking water, andWater footprint
Drinking water

It is estimated that 8% of worldwide water use is for domestic purposes.[29] These includedrinking water,bathing,cooking,toilet flushing, cleaning, laundry andgardening. Basic domestic water requirements have been estimated byPeter Gleick at around 50 liters per person per day, excluding water for gardens.

Drinking water is water that is of sufficiently high quality so that it can be consumed or used without risk of immediate or long term harm. Such water is commonly called potable water. In most developed countries, the water supplied to domestic, commerce and industry is all of drinking water standard even though only a very small proportion is actually consumed or used in food preparation.

844 million people still lacked even a basic drinking water service in 2017.[30]: 3  Of those, 159 million people worldwide drink water directly from surface water sources, such as lakes and streams.[30]: 3  One in eight people in the world do not have access to safe water.[31][32] Unsafe drinking water leads to 1.2 million deaths per year according to the World Bank.[33]

Challenges and threats

Water scarcity

This section is an excerpt fromWater scarcity.[edit]
Water scarcity (closely related to water stress orwater crisis) is the lack offresh water resources to meet the standard water demand. There are two types of water scarcity. One isphysical. The other iseconomic water scarcity.[34]: 560  Physical water scarcity is where there is not enough water to meet all demands. This includes water needed forecosystems to function. Regions with adesert climate often face physical water scarcity.[35]Central Asia,West Asia, andNorth Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers,aquifers, or other water sources. It also results from weak human capacity to meet water demand.[34]: 560  Many people insub-Saharan Africa are living with economic water scarcity.[36]: 11 

Water pollution

Polluted water
This section is an excerpt fromWater pollution.[edit]

Water pollution (or aquatic pollution) is the contamination ofwater bodies, with a negative impact on their uses.[37]: 6  It is usually a result of human activities. Water bodies includelakes,rivers,oceans,aquifers,reservoirs andgroundwater. Waterpollution results whencontaminants mix with these water bodies. Contaminants can come from one of four main sources. These aresewage discharges, industrial activities, agricultural activities, and urban runoff includingstormwater.[38] Water pollution may affect eithersurface water orgroundwater. This form of pollution can lead to many problems. One is thedegradation ofaquatic ecosystems. Another is spreadingwater-borne diseases when people use polluted water for drinking orirrigation.[39] Water pollution also reduces theecosystem services such asdrinking water provided by the water resource.

Water conflict

This section is an excerpt fromWater conflict.[edit]
Ethiopia's move to fill theGERD dam's reservoir could reduceNile flows by as much as 25% and devastate Egyptian farmlands.[40]
Water conflict typically refers to violence or disputes associated with access to, or control of, water resources, or the use of water or water systems as weapons or casualties of conflicts. The termwater war is colloquially used in media for some disputes over water, and often is more limited to describing a conflict between countries, states, or groups overthe rights to access water resources.[41][42] TheUnited Nations recognizes that water disputes result from opposing interests of water users, public or private.[43] A wide range of water conflicts appear throughout history, though they are rarely traditional wars waged over water alone.[44] Instead, water has long been a source of tension and one of the causes for conflicts. Water conflicts arise for several reasons, including territorial disputes, a fight for resources, and strategic advantage.[45]

Climate change

Further information:Effects of climate change on the water cycle
This section is an excerpt fromWater security § Climate change.[edit]
Impacts ofclimate change that are tied to water, affect people's water security on a daily basis. They include more frequent and intense heavy precipitation which affects the frequency, size and timing of floods.[46] Also droughts can alter the total amount offreshwater and cause a decline ingroundwater storage, and reduction ingroundwater recharge.[47] Reduction in water quality due to extreme events can also occur.[48]: 558  Faster melting of glaciers can also occur.[49]

Groundwater overdrafting

The world's supply ofgroundwater is steadily decreasing. Groundwater depletion (oroverdrafting) is occurring for example in Asia, South America and North America. It is still unclear how much natural renewalbalances this usage, and whetherecosystems are threatened.[50]

This section is an excerpt fromOverdrafting.[edit]
Within a long period of groundwater depletion in California'sCentral Valley, short periods of recovery were mostly driven by extreme weather events that typically caused flooding and had negative social, environmental and economic consequences.[51]
Overdrafting is the process of extractinggroundwater beyond theequilibrium yield of anaquifer. Groundwater is one of the largest sources offresh water and is found underground. The primary cause of groundwater depletion is the excessive pumping of groundwater up from underground aquifers. Insufficientrecharge can lead to depletion, reducing the usefulness of the aquifer for humans. Depletion can also have impacts on the environment around the aquifer, such as soil compression andland subsidence, local climatic change, soil chemistry changes, and other deterioration of the local environment.

Water resource management

"Water management" redirects here. For policymaking and politics of water management, seeWater resource policy andWater politics.
Further information:Research Institute for Groundwater andWater resources law
Global values of water resources and human water use (excludingAntarctica). Water resources 1961-90, water use around 2000. Computed by the global freshwater modelWaterGAP.

Water resource management is the activity of planning, developing, distributing and managing the optimum use of water resources. It is an aspect ofwater cycle management. The field of water resources management will have to continue to adapt to the current and future issues facing the allocation of water. With the growing uncertainties of globalclimate change and the long-term impacts of past management actions, this decision-making will be even more difficult. It is likely that ongoing climate change will lead to situations that have not been encountered. As a result, alternative management strategies, including participatory approaches andadaptive capacity are increasingly being used to strengthen water decision-making.

Ideally, water resource management planning has regard to all the competingdemands for water and seeks to allocate water on an equitable basis to satisfy all uses and demands. As with otherresource management, this is rarely possible in practice so decision-makers must prioritise issues of sustainability, equity and factor optimisation (in that order!) to achieve acceptable outcomes. One of the biggest concerns for water-based resources in the future is thesustainability of the current and future water resource allocation.

Sustainable Development Goal 6 has a target related to water resources management: "Target 6.5: By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate."[52][53]

Sustainable water management

At present, only about 0.08 percent of all the world's fresh water is accessible. And there is ever-increasing demand fordrinking,manufacturing,leisure andagriculture. Due to the small percentage of water available, optimizing the fresh water we have left fromnatural resources has been a growing challenge around the world.

Much effort in water resource management is directed at optimizing theuse of water and in minimizing theenvironmental impact of water use on the natural environment. The observation of water as an integral part of theecosystem is based onintegrated water resources management, based on the 1992Dublin Principles (see below).

Sustainable water management requires a holistic approach based on the principles ofIntegrated Water Resource Management, originally articulated in 1992 at the Dublin (January) and Rio (July) conferences. The four Dublin Principles, promulgated in theDublin Statement are:

  1. Fresh water is a finite and vulnerable resource, essential to sustain life, development and the environment;
  2. Water development and management should be based on a participatory approach, involving users, planners and policy-makers at all levels;
  3. Women play a central part in the provision, management and safeguarding of water;
  4. Water has an economic value in all its competing uses and should be recognized as an economic good.

Implementation of these principles has guided reform of national water management law around the world since 1992.

Further challenges to sustainable and equitable water resources management include the fact that many water bodies are shared across boundaries which may be international (seewater conflict) or intra-national (seeMurray-Darling basin).

Integrated water resources management

See also:Integrated Flood Management

Integrated water resources management (IWRM) has been defined by theGlobal Water Partnership (GWP) as "a process which promotes the coordinateddevelopment and management of water, land and related resources, in order to maximize the resultanteconomic andsocial welfare in an equitable manner without compromising thesustainability of vitalecosystems".[54]

Some scholars say that IWRM is complementary towater security because water security is a goal or destination, whilst IWRM is the process necessary to achieve that goal.[55]

IWRM is a paradigm that emerged at international conferences in the late 1900s and early 2000s, although participatory water management institutions have existed for centuries.[56] Discussions on a holistic way of managing water resources began already in the 1950s leading up to the 1977 United Nations Water Conference.[57] The development of IWRM was particularly recommended in the final statement of the ministers at the International Conference on Water and the Environment in 1992, known as theDublin Statement. This concept aims to promote changes in practices which are considered fundamental to improvedwater resource management. IWRM was a topic ofthe second World Water Forum, which was attended by a more varied group of stakeholders than the preceding conferences and contributed to the creation of the GWP.[56]

In theInternational Water Association definition, IWRM rests upon three principles that together act as the overall framework:[58]

  1. Social equity: ensuring equal access for all users (particularly marginalized and poorer user groups) to an adequate quantity and quality of water necessary to sustain humanwell-being.
  2. Economic efficiency: bringing the greatest benefit to the greatest number of users possible with the available financial and water resources.
  3. Ecological sustainability: requiring thataquatic ecosystems are acknowledged as users and that adequate allocation is made to sustain their natural functioning.

In 2002, the development of IWRM was discussed atthe World Summit on Sustainable Development held in Johannesburg, which aimed to encourage the implementation of IWRM at a global level.[59]The third World Water Forum recommended IWRM and discussed information sharing, stakeholder participation, and gender and class dynamics.[56]

Operationally, IWRM approaches involve applying knowledge from various disciplines as well as the insights from diverse stakeholders to devise and implement efficient, equitable and sustainable solutions to water and development problems. As such, IWRM is a comprehensive,participatory planning and implementation tool for managing and developing water resources in a way that balances social and economic needs, and that ensures theprotection of ecosystems for future generations. In addition, in light of contributing the achievement ofSustainable Development goals (SDGs),[60] IWRM has been evolving into more sustainable approach as it considers the Nexus approach, which is a cross-sectoral water resource management. The Nexus approach is based on the recognition that "water, energy and food are closely linked through global and local water, carbon and energy cycles or chains."

An IWRM approach aims at avoiding a fragmented approach of water resources management by considering the following aspects: Enabling environment, roles of Institutions, management Instruments. Some of the cross-cutting conditions that are also important to consider when implementing IWRM are: Political will and commitment, capacity development, adequate investment,financial stability and sustainable cost recovery, monitoring and evaluation. There is not one correct administrative model. The art of IWRM lies in selecting, adjusting and applying the right mix of these tools for a given situation. IWRM practices depend on context; at the operational level, the challenge is to translate the agreed principles into concrete action.

Managing water in urban settings

Typical urban water cycle depicting drinkingwater purification and municipalsewage treatment systems
This section is an excerpt fromIntegrated urban water management.[edit]

Integrated urban water management (IUWM) is the practice of managingfreshwater,wastewater, andstorm water as components of abasin-wide management plan. It builds on existingwater supply andsanitation considerations within anurban settlement by incorporating urbanwater management within the scope of the entire river basin.[61] IUWM is commonly seen as a strategy for achieving the goals ofWater Sensitive Urban Design. IUWM seeks to change the impact ofurban development on the naturalwater cycle, based on the premise that by managing the urban water cycle as a whole; a more efficient use of resources can be achieved providing not only economic benefits but also improved social and environmental outcomes. One approach is to establish an inner, urban, water cycle loop through the implementation of reuse strategies. Developing this urban water cycle loop requires an understanding both of the natural, pre-development, water balance and the post-development water balance. Accounting for flows in the pre- and post-development systems is an important step toward limiting urban impacts on the natural water cycle.[62]

IUWM within an urban water system can also be conducted by performance assessment of any new intervention strategies by developing a holistic approach which encompasses various system elements and criteria includingsustainability type ones in which integration of water system components includingwater supply,waste water andstorm water subsystems would be advantageous.[63] Simulation ofmetabolism type flows in urban water system can also be useful for analysing processes in urban water cycle of IUWM.[63][64]

By country

Water resource management and governance is handled differently by different countries. For example, in theUnited States, theUnited States Geological Survey (USGS) and its partners monitor water resources, conduct research and inform the public about groundwater quality.[65] Water resources in specific countries are described below:

Water resources by country

See also

References

  1. ^"Strains on freshwater resources".Atlas of Sustainable Development Goals 2023. Retrieved2024-05-19.
  2. ^"Earth's water distribution". United States Geological Survey. Retrieved2009-05-13.
  3. ^"Scientific Facts on Water: State of the Resource". GreenFacts Website. Retrieved2008-01-31.
  4. ^"The World's Water 2006–2007 Tables, Pacific Institute". Worldwater.org. Retrieved2009-03-12.
  5. ^Pulitzer Center on Crisis ReportingArchived July 23, 2009, at theWayback Machine
  6. ^"What is Groundwater? | International Groundwater Resources Assessment Centre".www.un-igrac.org. Retrieved2022-03-14.
  7. ^Shafeian, Nafise; Ranjbar, A.A.; Gorji, Tahereh B. (June 2022). "Progress in atmospheric water generation systems: A review".Renewable and Sustainable Energy Reviews.161 112325.Bibcode:2022RSERv.16112325S.doi:10.1016/j.rser.2022.112325.S2CID 247689027.
  8. ^Jarimi, Hasila; Powell, Richard; Riffat, Saffa (18 May 2020)."Review of sustainable methods for atmospheric water harvesting".International Journal of Low-Carbon Technologies.15 (2):253–276.doi:10.1093/ijlct/ctz072.
  9. ^Raveesh, G.; Goyal, R.; Tyagi, S.K. (July 2021). "Advances in atmospheric water generation technologies".Energy Conversion and Management.239 114226.Bibcode:2021ECM...23914226R.doi:10.1016/j.enconman.2021.114226.S2CID 236264708.
  10. ^van Vliet, Michelle T H; Jones, Edward R; Flörke, Martina; Franssen, Wietse H P; Hanasaki, Naota; Wada, Yoshihide; Yearsley, John R (2021-02-01)."Global water scarcity including surface water quality and expansions of clean water technologies".Environmental Research Letters.16 (2): 024020.Bibcode:2021ERL....16b4020V.doi:10.1088/1748-9326/abbfc3.ISSN 1748-9326.
  11. ^Tuser, Cristina (May 24, 2022)."What is potable reuse?".Wastewater Digest. Retrieved2022-08-29.
  12. ^Andersson, K., Rosemarin, A., Lamizana, B., Kvarnström, E., McConville, J., Seidu, R., Dickin, S. and Trimmer, C. (2016).Sanitation, Wastewater Management and Sustainability: from Waste Disposal to Resource Recovery. Nairobi and Stockholm: United Nations Environment Programme and Stockholm Environment Institute.ISBN 978-92-807-3488-1
  13. ^Warsinger, David M.; Chakraborty, Sudip; Tow, Emily W.; Plumlee, Megan H.; Bellona, Christopher; Loutatidou, Savvina; Karimi, Leila; Mikelonis, Anne M.; Achilli, Andrea; Ghassemi, Abbas; Padhye, Lokesh P.; Snyder, Shane A.; Curcio, Stefano; Vecitis, Chad D.; Arafat, Hassan A.; Lienhard, John H. (2018)."A review of polymeric membranes and processes for potable water reuse".Progress in Polymer Science.81:209–237.doi:10.1016/j.progpolymsci.2018.01.004.PMC 6011836.PMID 29937599.
  14. ^Takman, Maria; Svahn, Ola; Paul, Catherine; Cimbritz, Michael; Blomqvist, Stefan; Struckmann Poulsen, Jan; Lund Nielsen, Jeppe; Davidsson, Åsa (2023-10-15)."Assessing the potential of a membrane bioreactor and granular activated carbon process for wastewater reuse – A full-scale WWTP operated over one year in Scania, Sweden".Science of the Total Environment.895 165185.Bibcode:2023ScTEn.89565185T.doi:10.1016/j.scitotenv.2023.165185.PMID 37385512.
  15. ^"Desalination" (definition),The American Heritage Science Dictionary, via dictionary.com. Retrieved August 19, 2007.
  16. ^Panagopoulos, Argyris; Haralambous, Katherine-Joanne; Loizidou, Maria (2019-11-25). "Desalination brine disposal methods and treatment technologies – A review".The Science of the Total Environment.693 133545.Bibcode:2019ScTEn.69333545P.doi:10.1016/j.scitotenv.2019.07.351.ISSN 1879-1026.PMID 31374511.S2CID 199387639.
  17. ^Fischetti, Mark (September 2007). "Fresh from the Sea".Scientific American.297 (3):118–119.Bibcode:2007SciAm.297c.118F.doi:10.1038/scientificamerican0907-118.PMID 17784633.
  18. ^Ebrahimi, Atieh; Najafpour, Ghasem D; Yousefi Kebria, Daryoush (2019). "Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions".Desalination.432: 1.doi:10.1016/j.desal.2018.01.002.
  19. ^"Making the Deserts Bloom: Harnessing nature to deliver us from drought, Distillations Podcast and transcript, Episode 239".Science History Institute. March 19, 2019. Retrieved27 August 2019.
  20. ^Elsaid, Khaled; Kamil, Mohammed; Sayed, Enas Taha; Abdelkareem, Mohammad Ali; Wilberforce, Tabbi; Olabi, A. (2020). "Environmental impact of desalination technologies: A review".Science of the Total Environment.748 141528.Bibcode:2020ScTEn.74841528E.doi:10.1016/j.scitotenv.2020.141528.PMID 32818886.
  21. ^Cohen, Yoram (2021). "Advances in Water Desalination Technologies".Materials and Energy. Vol. 17. WORLD SCIENTIFIC.doi:10.1142/12009.ISBN 978-981-12-2697-7.ISSN 2335-6596.S2CID 224974880.
  22. ^Alix, Alexandre; Bellet, Laurent; Trommsdorff, Corinne; Audureau, Iris, eds. (2022).Reducing the Greenhouse Gas Emissions of Water and Sanitation Services: Overview of emissions and their potential reduction illustrated by utility know-how. IWA Publishing.doi:10.2166/9781789063172.ISBN 978-1-78906-317-2.S2CID 250128707.
  23. ^abcRahman, Afeefa; Kumar, Praveen; Dominguez, Francina (6 December 2022)."Increasing freshwater supply to sustainably address global water security at scale".Scientific Reports.12 (1): 20262.Bibcode:2022NatSR..1220262R.doi:10.1038/s41598-022-24314-2.ISSN 2045-2322.PMC 9726751.PMID 36473864.
  24. ^McDonald, Bob."Water, water, everywhere — and maybe here's how to make it drinkable". Retrieved17 January 2023.
  25. ^Yirka, Bob."Model suggests a billion people could get safe drinking water from hypothetical harvesting device".Tech Xplore. Retrieved15 November 2021.
  26. ^"Solar-powered harvesters could produce clean water for one billion people".Physics World. 13 November 2021. Retrieved15 November 2021.
  27. ^Lord, Jackson; Thomas, Ashley; Treat, Neil; Forkin, Matthew; Bain, Robert; Dulac, Pierre; Behroozi, Cyrus H.; Mamutov, Tilek; Fongheiser, Jillia; Kobilansky, Nicole; Washburn, Shane; Truesdell, Claudia; Lee, Clare; Schmaelzle, Philipp H. (October 2021)."Global potential for harvesting drinking water from air using solar energy".Nature.598 (7882):611–617.Bibcode:2021Natur.598..611L.doi:10.1038/s41586-021-03900-w.ISSN 1476-4687.PMC 8550973.PMID 34707305.
  28. ^Snyder, R. L.; Melo-Abreu, J. P. (2005).Frost protection: fundamentals, practice, and economics. Vol. 1. Food and Agriculture Organization of the United Nations.ISBN 978-92-5-105328-7.ISSN 1684-8241.
  29. ^ab"WBCSD Water Facts & Trends". Archived fromthe original on 2012-03-01. Retrieved2009-03-12.
  30. ^abWHO, UNICEF (2017).Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Geneva.ISBN 978-92-4-151289-3.OCLC 1010983346.{{cite book}}: CS1 maint: location missing publisher (link)
  31. ^"Global WASH Fast Facts | Global Water, Sanitation and Hygiene | Healthy Water | CDC".www.cdc.gov. 2018-11-09. Retrieved2019-04-09.
  32. ^Water Aid."Water". Archived fromthe original on 16 April 2013. Retrieved17 March 2012.
  33. ^Nordquist, Jennifer DJ, and Dan Katz. The World Bank and the International Monetary Fund Should Do Less to Achieve More. Center for Strategic and International Studies (CSIS), 2024. p. 7.JSTOR website Retrieved 24 Apr. 2025.
  34. ^abCaretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022:Chapter 4: Water. In:Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–712, doi:10.1017/9781009325844.006.
  35. ^Rijsberman, Frank R. (2006)."Water scarcity: Fact or fiction?".Agricultural Water Management.80 (1–3):5–22.Bibcode:2006AgWM...80....5R.doi:10.1016/j.agwat.2005.07.001.
  36. ^IWMI (2007)Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan, and Colombo: International Water Management Institute.
  37. ^Von Sperling, Marcos (2007)."Wastewater Characteristics, Treatment and Disposal".Water Intelligence Online. Biological Wastewater Treatment.6. IWA Publishing.doi:10.2166/9781780402086.ISBN 978-1-78040-208-6.
  38. ^Eckenfelder Jr WW (2000).Kirk-Othmer Encyclopedia of Chemical Technology.John Wiley & Sons.doi:10.1002/0471238961.1615121205031105.a01.ISBN 978-0-471-48494-3.
  39. ^"Water Pollution".Environmental Health Education Program. Cambridge, MA:Harvard T.H. Chan School of Public Health. July 23, 2013.Archived from the original on September 18, 2021. RetrievedSeptember 18, 2021.
  40. ^"In Africa, War Over Water Looms As Ethiopia Nears Completion Of Nile River Dam".NPR. 27 February 2018.
  41. ^Tulloch, James (August 26, 2009)."Water Conflicts: Fight or Flight?". Allianz. Archived fromthe original on 2008-08-29. Retrieved14 January 2010.
  42. ^Kameri-Mbote, Patricia (January 2007)."Water, Conflict, and Cooperation: Lessons from the nile river Basin"(PDF).Navigating Peace (4). Woodrow Wilson International Center for Scholars. Archived fromthe original(PDF) on 2010-07-06.
  43. ^United Nations Potential Conflict to Cooperation Potential, accessed November 21, 2008
  44. ^Peter Gleick, 1993."Water and conflict."International Security Vol. 18, No. 1, pp. 79-112 (Summer 1993).
  45. ^Heidelberg Institute for International Conflict Research (Department of Political Science,University of Heidelberg); Conflict Barometer 2007:Crises – Wars – Coups d'État – Nagotiations – Mediations – Peace Settlements, 16th annual conflict analysis, 2007
  46. ^"Flooding and Climate Change: Everything You Need to Know".www.nrdc.org. 2019-04-10. Retrieved2023-07-11.
  47. ^Petersen-Perlman, Jacob D.; Aguilar-Barajas, Ismael; Megdal, Sharon B. (2022-08-01)."Drought and groundwater management: Interconnections, challenges, and policyresponses".Current Opinion in Environmental Science & Health.28 100364.Bibcode:2022COESH..2800364P.doi:10.1016/j.coesh.2022.100364.ISSN 2468-5844.
  48. ^Caretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022:Chapter 4: Water. In:Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–712, doi:10.1017/9781009325844.006.
  49. ^Harvey, Chelsea."Glaciers May Melt Even Faster Than Expected, Study Finds".Scientific American. Retrieved2023-07-11.
  50. ^Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F. P.; van Beek, Ludovicus P. H. (9 August 2012). "Water balance of global aquifers revealed by groundwater footprint".Nature.488 (7410):197–200.Bibcode:2012Natur.488..197G.doi:10.1038/nature11295.PMID 22874965.S2CID 4393813.
  51. ^Liu, Pang-Wei; Famiglietti, James S.; Purdy, Adam J.; Adams, Kyra H.; et al. (19 December 2022)."Groundwater depletion in California's Central Valley accelerates during megadrought".Nature Communications.13 (7825): 7825.Bibcode:2022NatCo..13.7825L.doi:10.1038/s41467-022-35582-x.PMC 9763392.PMID 36535940. (Archive of chart itself)
  52. ^Ritchie, Roser, Mispy, Ortiz-Ospina (2018)"Measuring progress towards the Sustainable Development Goals." (SDG 6)SDG-Tracker.org, website
  53. ^United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017,Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313)
  54. ^"International Decade for Action 'Water for Life' 2005-2015. Focus Areas: Integrated Water Resources Management (IWRM)".www.un.org. Retrieved2020-11-18.
  55. ^Sadoff, Claudia; Grey, David; Borgomeo, Edoardo (2020). "Water Security".Oxford Research Encyclopedia of Environmental Science.doi:10.1093/acrefore/9780199389414.013.609.ISBN 978-0-19-938941-4.
  56. ^abcRahaman, Muhammad Mizanur; Varis, Olli (April 2005)."Integrated water resources management: evolution, prospects and future challenges".Sustainability: Science, Practice and Policy.1 (1):15–21.Bibcode:2005SSPP....1...15R.doi:10.1080/15487733.2005.11907961.ISSN 1548-7733.S2CID 10057051.
  57. ^Asit K.B. (2004). Integrated Water Resources Management: A Reassessment, Water International, 29(2), 251
  58. ^"Integrated Water Resources Management: Basic Concepts | IWA Publishing".www.iwapublishing.com. Retrieved2020-11-18.
  59. ^Ibisch, Ralf B.; Bogardi, Janos J.; Borchardt, Dietrich (2016), Borchardt, Dietrich; Bogardi, Janos J.; Ibisch, Ralf B. (eds.),Integrated Water Resources Management: Concept, Research and Implementation, Cham: Springer International Publishing, pp. 3–32,doi:10.1007/978-3-319-25071-7_1,ISBN 978-3-319-25069-4, retrieved2020-11-14
  60. ^Hülsmann, Stephan; Ardakanian, Reza, eds. (2018).Managing Water, Soil and Waste Resources to Achieve Sustainable Development Goals. Cham: Springer International Publishing.doi:10.1007/978-3-319-75163-4.ISBN 978-3-319-75162-7.S2CID 135441230.
  61. ^Jonathan Parkinson; J. A. Goldenfum; Carlos E. M. Tucci, eds. (2010).Integrated urban water management : humid tropics. Boca Raton: CRC Press. p. 2.ISBN 978-0-203-88117-0.OCLC 671648461.
  62. ^Barton, A.B. (2009)."Advancing IUWM through an understanding of the urban water balance". Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO). Archived fromthe original on 2008-03-24. Retrieved2009-09-14.
  63. ^abBehzadian, K; Kapelan, Z (2015)."Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems"(PDF).Science of the Total Environment.527–528:220–231.Bibcode:2015ScTEn.527..220B.doi:10.1016/j.scitotenv.2015.04.097.hdl:10871/17351.PMID 25965035.[dead link]
  64. ^Behzadian, k; Kapelan, Z (2015)."Modelling metabolism based performance of an urban water system using WaterMet2"(PDF).Resources, Conservation and Recycling.99:84–99.doi:10.1016/j.resconrec.2015.03.015.hdl:10871/17108.
  65. ^"Water Resources".www.usgs.gov. Retrieved2021-09-17.

External links

Overviews
States
Forms
OnEarth
Extraterrestrial
Physical parameters
Air
Pollution / quality
Emissions
Energy
Land
Life
Water
Types / location
Aspects
Related
Resource
Politics
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Water_resources&oldid=1322531374"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp