Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Wahlquist fluid

From Wikipedia, the free encyclopedia
Perfect fluid solution in general relativity
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Wahlquist fluid" – news ·newspapers ·books ·scholar ·JSTOR
(March 2014) (Learn how and when to remove this message)

Ingeneral relativity, theWahlquist fluid is an exact rotatingperfect fluid solution toEinstein's equation with equation of state corresponding to constant gravitational mass density.

Introduction

[edit]

The Wahlquist fluid was first discovered byHugo D. Wahlquist in 1968.[1] It is one of few known exact rotating perfect fluid solutions in general relativity. The solution reduces to the staticWhittaker metric in the limit of zero rotation.

Metric

[edit]

The metric of a Wahlquist fluid is given by

ds2=f(dtA~dφ)2r02(ζ2+ξ2)[dζ2(1k~2ζ2)h~1+dξ2(1+k~2ξ2)h~2+h~1h~2h~1h~2dφ2]{\displaystyle ds^{2}=f(dt-{\tilde {A}}d\varphi )^{2}-r_{0}^{2}(\zeta ^{2}+\xi ^{2})[{\frac {d\zeta ^{2}}{(1-{\tilde {k}}^{2}\zeta ^{2}){\tilde {h}}_{1}}}+{\frac {d\xi ^{2}}{(1+{\tilde {k}}^{2}\xi ^{2}){\tilde {h}}_{2}}}+{\frac {{\tilde {h}}_{1}{\tilde {h}}_{2}}{{\tilde {h}}_{1}-{\tilde {h}}_{2}}}d\varphi ^{2}]}

where

f=h~1h~2ζ2+ξ2{\displaystyle f={\frac {{\tilde {h}}_{1}-{\tilde {h}}_{2}}{\zeta ^{2}+\xi ^{2}}}}
A~=r0(ξ2h~1+ζ2h~2h~1h~2ξA2){\displaystyle {\tilde {A}}=r_{0}({\frac {\xi ^{2}{\tilde {h}}_{1}+\zeta ^{2}{\tilde {h}}_{2}}{{\tilde {h}}_{1}-{\tilde {h}}_{2}}}-\xi _{A}^{2})}
h~1(ζ)=1+ζ2+ζκ2[ζ+1k~1k~2ζ2arcsin(k~ζ)]{\displaystyle {\tilde {h}}_{1}(\zeta )=1+\zeta ^{2}+{\frac {\zeta }{\kappa ^{2}}}[\zeta _{+}{\frac {1}{\tilde {k}}}{\sqrt {1-{\tilde {k}}^{2}\zeta ^{2}}}\arcsin({\tilde {k}}\zeta )]}
h~2(ξ)=1ξ2ξκ2[ξ1k~1+k~2ξ2sinh1(k~ξ)]{\displaystyle {\tilde {h}}_{2}(\xi )=1-\xi ^{2}-{\frac {\xi }{\kappa ^{2}}}[\xi _{-}{\frac {1}{\tilde {k}}}{\sqrt {1+{\tilde {k}}^{2}\xi ^{2}}}\sinh ^{-1}({\tilde {k}}\xi )]}

andξA{\displaystyle \xi _{A}} is defined byh~2(ξA)=0{\displaystyle {\tilde {h}}_{2}(\xi _{A})=0}. It is a solution with equation of stateμ+3p=μ0{\displaystyle \mu +3p=\mu _{0}} whereμ0{\displaystyle \mu _{0}} is a constant.

Properties

[edit]

The pressure and density of the Wahlquist fluid are given by

p=12μ0(1κ2f){\displaystyle p={\frac {1}{2}}\mu _{0}(1-\kappa ^{2}f)}
μ=12μ0(3κ2f1){\displaystyle \mu ={\frac {1}{2}}\mu _{0}(3\kappa ^{2}f-1)}

The vanishing pressure surface of the fluid isprolate, in contrast to physical rotating stars, which areoblate. It has been shown that the Wahlquist fluid can not be matched to an asymptotically flat region of spacetime.[2]

References

[edit]
  1. ^Wahlquist, Hugo D. (1968). "Interior Solution for a Finite Rotating Body of Perfect Fluid".Physical Review.172 (5):1291–1296.Bibcode:1968PhRv..172.1291W.doi:10.1103/PhysRev.172.1291.
  2. ^Bradley, Michael; Fodor, Gyula; Marklund, Mattias; Perjés, Zoltán (2000). "The Wahlquist metric cannot describe an isolated rotating body".Classical and Quantum Gravity.17 (2):351–359.arXiv:gr-qc/9910001.Bibcode:2000CQGra..17..351B.doi:10.1088/0264-9381/17/2/306.S2CID 2911496.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Wahlquist_fluid&oldid=1162980651"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp