Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Volume element

From Wikipedia, the free encyclopedia
Concept in integration theory

Inmathematics, avolume element provides a means forintegrating afunction with respect tovolume in various coordinate systems such asspherical coordinates andcylindrical coordinates. Thus a volume element is an expression of the formdV=ρ(u1,u2,u3)du1du2du3{\displaystyle \mathrm {d} V=\rho (u_{1},u_{2},u_{3})\,\mathrm {d} u_{1}\,\mathrm {d} u_{2}\,\mathrm {d} u_{3}}where theui{\displaystyle u_{i}} are the coordinates, so that the volume of any setB{\displaystyle B} can be computed byVolume(B)=Bρ(u1,u2,u3)du1du2du3.{\displaystyle \operatorname {Volume} (B)=\int _{B}\rho (u_{1},u_{2},u_{3})\,\mathrm {d} u_{1}\,\mathrm {d} u_{2}\,\mathrm {d} u_{3}.}For example, in spherical coordinatesdV=u12sinu2du1du2du3{\displaystyle \mathrm {d} V=u_{1}^{2}\sin u_{2}\,\mathrm {d} u_{1}\,\mathrm {d} u_{2}\,\mathrm {d} u_{3}}, and soρ=u12sinu2{\displaystyle \rho =u_{1}^{2}\sin u_{2}}.

The notion of a volume element is not limited to three dimensions: in two dimensions it is often known as thearea element, and in this setting it is useful for doingsurface integrals. Under changes of coordinates, the volume element changes by the absolute value of theJacobian determinant of the coordinate transformation (by thechange of variables formula). This fact allows volume elements to be defined as a kind ofmeasure on amanifold. On anorientabledifferentiable manifold, a volume element typically arises from avolume form: a top degreedifferential form. On a non-orientable manifold, the volume element is typically theabsolute value of a (locally defined) volume form: it defines a1-density.

Volume element in Euclidean space

[edit]

InEuclidean space, the volume element is given by the product of the differentials of the Cartesian coordinatesdV=dxdydz.{\displaystyle \mathrm {d} V=\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z.}In different coordinate systems of the formx=x(u1,u2,u3){\displaystyle x=x(u_{1},u_{2},u_{3})},y=y(u1,u2,u3){\displaystyle y=y(u_{1},u_{2},u_{3})},z=z(u1,u2,u3){\displaystyle z=z(u_{1},u_{2},u_{3})}, the volume elementchanges by the Jacobian (determinant) of the coordinate change:dV=|(x,y,z)(u1,u2,u3)|du1du2du3.{\displaystyle \mathrm {d} V=\left|{\frac {\partial (x,y,z)}{\partial (u_{1},u_{2},u_{3})}}\right|\,\mathrm {d} u_{1}\,\mathrm {d} u_{2}\,\mathrm {d} u_{3}.}For example, in spherical coordinates (mathematical convention)x=ρcosθsinϕy=ρsinθsinϕz=ρcosϕ{\displaystyle {\begin{aligned}x&=\rho \cos \theta \sin \phi \\y&=\rho \sin \theta \sin \phi \\z&=\rho \cos \phi \end{aligned}}}the Jacobian determinant is|(x,y,z)(ρ,ϕ,θ)|=ρ2sinϕ{\displaystyle \left|{\frac {\partial (x,y,z)}{\partial (\rho ,\phi ,\theta )}}\right|=\rho ^{2}\sin \phi }so thatdV=ρ2sinϕdρdθdϕ.{\displaystyle \mathrm {d} V=\rho ^{2}\sin \phi \,\mathrm {d} \rho \,\mathrm {d} \theta \,\mathrm {d} \phi .}This can be seen as a special case of the fact that differential forms transform through a pullbackF{\displaystyle F^{*}} asF(udy1dyn)=(uF)det(Fjxi)dx1dxn{\displaystyle F^{*}(u\;dy^{1}\wedge \cdots \wedge dy^{n})=(u\circ F)\det \left({\frac {\partial F^{j}}{\partial x^{i}}}\right)\mathrm {d} x^{1}\wedge \cdots \wedge \mathrm {d} x^{n}}

Volume element of a linear subspace

[edit]

Consider thelinear subspace of then-dimensionalEuclidean spaceRn that is spanned by a collection oflinearly independent vectorsX1,,Xk.{\displaystyle X_{1},\dots ,X_{k}.}To find the volume element of the subspace, it is useful to know the fact fromlinear algebra that the volume of theparallelepiped spanned by theXi{\displaystyle X_{i}} is the square root of thedeterminant of theGramian matrix of theXi{\displaystyle X_{i}}:det(XiXj)i,j=1k.{\displaystyle {\sqrt {\det(X_{i}\cdot X_{j})_{i,j=1\dots k}}}.}

Any pointp in the subspace can be given coordinates(u1,u2,,uk){\displaystyle (u_{1},u_{2},\dots ,u_{k})} such thatp=u1X1++ukXk.{\displaystyle p=u_{1}X_{1}+\cdots +u_{k}X_{k}.}At a pointp, if we form a small parallelepiped with sidesdui{\displaystyle \mathrm {d} u_{i}}, then the volume of that parallelepiped is the square root of the determinant of the Grammian matrixdet((duiXi)(dujXj))i,j=1k=det(XiXj)i,j=1kdu1du2duk.{\displaystyle {\sqrt {\det \left((du_{i}X_{i})\cdot (du_{j}X_{j})\right)_{i,j=1\dots k}}}={\sqrt {\det(X_{i}\cdot X_{j})_{i,j=1\dots k}}}\;\mathrm {d} u_{1}\,\mathrm {d} u_{2}\,\cdots \,\mathrm {d} u_{k}.}This therefore defines the volume form in the linear subspace.

Volume element of manifolds

[edit]
See also:Riemannian volume form

On anorientedRiemannian manifold of dimensionn, the volume element is a volume form equal to theHodge dual of the unit constant function,f(x)=1{\displaystyle f(x)=1}:ω=1.{\displaystyle \omega =\star 1.}Equivalently, the volume element is precisely theLevi-Civita tensorϵ{\displaystyle \epsilon }.[1] In coordinates,ω=ϵ=|detg|dx1dxn{\displaystyle \omega =\epsilon ={\sqrt {\left|\det g\right|}}\,\mathrm {d} x^{1}\wedge \cdots \wedge \mathrm {d} x^{n}}wheredetg{\displaystyle \det g} is thedeterminant of themetric tensorg written in the coordinate system.

Area element of a surface

[edit]

A simple example of a volume element can be explored by considering a two-dimensional surface embedded inn-dimensionalEuclidean space. Such a volume element is sometimes called anarea element. Consider a subsetUR2{\displaystyle U\subset \mathbb {R} ^{2}} and a mapping functionφ:URn{\displaystyle \varphi :U\to \mathbb {R} ^{n}}thus defining a surface embedded inRn{\displaystyle \mathbb {R} ^{n}}. In two dimensions, volume is just area, and a volume element gives a way to determine the area of parts of the surface. Thus a volume element is an expression of the formf(u1,u2)du1du2{\displaystyle f(u_{1},u_{2})\,\mathrm {d} u_{1}\,\mathrm {d} u_{2}}that allows one to compute the area of a setB lying on the surface by computing the integralArea(B)=Bf(u1,u2)du1du2.{\displaystyle \operatorname {Area} (B)=\int _{B}f(u_{1},u_{2})\,\mathrm {d} u_{1}\,\mathrm {d} u_{2}.}

Here we will find the volume element on the surface that defines area in the usual sense. TheJacobian matrix of the mapping isJij=φiuj{\displaystyle J_{ij}={\frac {\partial \varphi _{i}}{\partial u_{j}}}}with indexi running from 1 ton, andj running from 1 to 2. The Euclideanmetric in then-dimensional space induces a metricg=JTJ{\displaystyle g=J^{T}J} on the setU, with matrix elementsgij=k=1nJkiJkj=k=1nφkuiφkuj.{\displaystyle g_{ij}=\sum _{k=1}^{n}J_{ki}J_{kj}=\sum _{k=1}^{n}{\frac {\partial \varphi _{k}}{\partial u_{i}}}{\frac {\partial \varphi _{k}}{\partial u_{j}}}.}

Thedeterminant of the metric is given bydetg=|φu1φu2|2=det(JTJ){\displaystyle \det g=\left|{\frac {\partial \varphi }{\partial u_{1}}}\wedge {\frac {\partial \varphi }{\partial u_{2}}}\right|^{2}=\det(J^{T}J)}

For a regular surface, this determinant is non-vanishing; equivalently, the Jacobian matrix has rank 2.

Now consider a change of coordinates onU, given by adiffeomorphismf:UU,{\displaystyle f\colon U\to U,}so that the coordinates(u1,u2){\displaystyle (u_{1},u_{2})} are given in terms of(v1,v2){\displaystyle (v_{1},v_{2})} by(u1,u2)=f(v1,v2){\displaystyle (u_{1},u_{2})=f(v_{1},v_{2})}. The Jacobian matrix of this transformation is given byFij=fivj.{\displaystyle F_{ij}={\frac {\partial f_{i}}{\partial v_{j}}}.}

In the new coordinates, we haveφivj=k=12φiukfkvj{\displaystyle {\frac {\partial \varphi _{i}}{\partial v_{j}}}=\sum _{k=1}^{2}{\frac {\partial \varphi _{i}}{\partial u_{k}}}{\frac {\partial f_{k}}{\partial v_{j}}}}and so the metric transforms asg~=FTgF{\displaystyle {\tilde {g}}=F^{T}gF}whereg~{\displaystyle {\tilde {g}}} is the pullback metric in thev coordinate system. The determinant isdetg~=detg(detF)2.{\displaystyle \det {\tilde {g}}=\det g\left(\det F\right)^{2}.}

Given the above construction, it should now be straightforward to understand how the volume element is invariant under an orientation-preserving change of coordinates.

In two dimensions, the volume is just the area. The area of a subsetBU{\displaystyle B\subset U} is given by the integralArea(B)=Bdetgdu1du2=Bdetg|detF|dv1dv2=Bdetg~dv1dv2.{\displaystyle {\begin{aligned}{\mbox{Area}}(B)&=\iint _{B}{\sqrt {\det g}}\;\mathrm {d} u_{1}\;\mathrm {d} u_{2}\\[1.6ex]&=\iint _{B}{\sqrt {\det g}}\left|\det F\right|\;\mathrm {d} v_{1}\;\mathrm {d} v_{2}\\[1.6ex]&=\iint _{B}{\sqrt {\det {\tilde {g}}}}\;\mathrm {d} v_{1}\;\mathrm {d} v_{2}.\end{aligned}}}

Thus, in either coordinate system, the volume element takes the same expression: the expression of the volume element is invariant under a change of coordinates.

Note that there was nothing particular to two dimensions in the above presentation; the above trivially generalizes to arbitrary dimensions.

Example: Sphere

[edit]

For example, consider the sphere with radiusr centered at the origin inR3. This can be parametrized usingspherical coordinates with the mapϕ(u1,u2)=(rcosu1sinu2,rsinu1sinu2,rcosu2).{\displaystyle \phi (u_{1},u_{2})=(r\cos u_{1}\sin u_{2},r\sin u_{1}\sin u_{2},r\cos u_{2}).}Theng=(r2sin2u200r2),{\displaystyle g={\begin{pmatrix}r^{2}\sin ^{2}u_{2}&0\\0&r^{2}\end{pmatrix}},}and the area element isω=detgdu1du2=r2sinu2du1du2.{\displaystyle \omega ={\sqrt {\det g}}\;\mathrm {d} u_{1}\mathrm {d} u_{2}=r^{2}\sin u_{2}\,\mathrm {d} u_{1}\mathrm {d} u_{2}.}

See also

[edit]

References

[edit]
  • Besse, Arthur L. (1987),Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Berlin, New York:Springer-Verlag, pp. xii+510,ISBN 978-3-540-15279-8
  1. ^Carroll, Sean.Spacetime and Geometry. Addison Wesley, 2004, p. 90
Retrieved from "https://en.wikipedia.org/w/index.php?title=Volume_element&oldid=1332932598"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp