Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Vector potential

From Wikipedia, the free encyclopedia
Mathematical concept in vector calculus
This article is about the general concept in the mathematical theory of vector fields. For the vector potential in electromagnetism, seeMagnetic vector potential. For the vector potential in fluid mechanics, seeStream function.

Invector calculus, avector potential is avector field whosecurl is a given vector field. This is analogous to ascalar potential, which is a scalar field whosegradient is a given vector field.

Formally, given a vector fieldv{\displaystyle \mathbf {v} }, avector potential is aC2{\displaystyle C^{2}} vector fieldA{\displaystyle \mathbf {A} } such thatv=×A.{\displaystyle \mathbf {v} =\nabla \times \mathbf {A} .}

Consequence

[edit]

If a vector fieldv{\displaystyle \mathbf {v} } admits a vector potentialA{\displaystyle \mathbf {A} }, then from the equality(×A)=0{\displaystyle \nabla \cdot (\nabla \times \mathbf {A} )=0}(divergence of thecurl is zero) one obtainsv=(×A)=0,{\displaystyle \nabla \cdot \mathbf {v} =\nabla \cdot (\nabla \times \mathbf {A} )=0,}which implies thatv{\displaystyle \mathbf {v} } must be asolenoidal vector field.

Theorem

[edit]

Letv:R3R3{\displaystyle \mathbf {v} :\mathbb {R} ^{3}\to \mathbb {R} ^{3}}be asolenoidal vector field which is twicecontinuously differentiable. Assume thatv(x){\displaystyle \mathbf {v} (\mathbf {x} )} decreases at least as fast as1/x{\displaystyle 1/\|\mathbf {x} \|} forx{\displaystyle \|\mathbf {x} \|\to \infty }. DefineA(x)=14πR3y×v(y)xyd3y{\displaystyle \mathbf {A} (\mathbf {x} )={\frac {1}{4\pi }}\int _{\mathbb {R} ^{3}}{\frac {\nabla _{y}\times \mathbf {v} (\mathbf {y} )}{\left\|\mathbf {x} -\mathbf {y} \right\|}}\,d^{3}\mathbf {y} }wherey×{\displaystyle \nabla _{y}\times } denotes curl with respect to variabley{\displaystyle \mathbf {y} }. ThenA{\displaystyle \mathbf {A} } is a vector potential forv{\displaystyle \mathbf {v} }. That is,×A=v.{\displaystyle \nabla \times \mathbf {A} =\mathbf {v} .}

The integral domain can be restricted to any simply connected regionΩ{\displaystyle \mathbf {\Omega } }. That is,A{\displaystyle \mathbf {A'} } also is a vector potential ofv{\displaystyle \mathbf {v} }, whereA(x)=14πΩy×v(y)xyd3y.{\displaystyle \mathbf {A'} (\mathbf {x} )={\frac {1}{4\pi }}\int _{\Omega }{\frac {\nabla _{y}\times \mathbf {v} (\mathbf {y} )}{\left\|\mathbf {x} -\mathbf {y} \right\|}}\,d^{3}\mathbf {y} .}

A generalization of this theorem is theHelmholtz decomposition theorem, which states that any vector field can be decomposed as a sum of a solenoidal vector field and anirrotational vector field.

Byanalogy with theBiot-Savart law,A(x){\displaystyle \mathbf {A''} (\mathbf {x} )} also qualifies as a vector potential forv{\displaystyle \mathbf {v} }, where

A(x)=Ωv(y)×(xy)4π|xy|3d3y{\displaystyle \mathbf {A''} (\mathbf {x} )=\int _{\Omega }{\frac {\mathbf {v} (\mathbf {y} )\times (\mathbf {x} -\mathbf {y} )}{4\pi |\mathbf {x} -\mathbf {y} |^{3}}}d^{3}\mathbf {y} }.

Substitutingj{\displaystyle \mathbf {j} } (current density) forv{\displaystyle \mathbf {v} } andH{\displaystyle \mathbf {H} } (H-field) forA{\displaystyle \mathbf {A} }, yields the Biot-Savart law.

LetΩ{\displaystyle \mathbf {\Omega } } be astar domain centered at the pointp{\displaystyle \mathbf {p} }, wherepR3{\displaystyle \mathbf {p} \in \mathbb {R} ^{3}}. ApplyingPoincaré's lemma fordifferential forms to vector fields, thenA(x){\displaystyle \mathbf {A'''} (\mathbf {x} )} also is a vector potential forv{\displaystyle \mathbf {v} }, where

A(x)=01s((xp)×(v(sx+(1s)p)) ds{\displaystyle \mathbf {A'''} (\mathbf {x} )=\int _{0}^{1}s((\mathbf {x} -\mathbf {p} )\times (\mathbf {v} (s\mathbf {x} +(1-s)\mathbf {p} ))\ ds}

Nonuniqueness

[edit]

The vector potential admitted by a solenoidal field is not unique. IfA{\displaystyle \mathbf {A} } is a vector potential forv{\displaystyle \mathbf {v} }, then so isA+f,{\displaystyle \mathbf {A} +\nabla f,}wheref{\displaystyle f} is any continuously differentiable scalar function. This follows from the fact that the curl of the gradient is zero.

This nonuniqueness leads to a degree of freedom in the formulation of electrodynamics, or gauge freedom, and requireschoosing a gauge.

See also

[edit]

References

[edit]
  • Fundamentals of Engineering Electromagnetics by David K. Cheng, Addison-Wesley, 1993.
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Vector_potential&oldid=1249429572"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp