Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Van der Waerden notation

From Wikipedia, the free encyclopedia
Notation used for Weyl spinors

Intheoretical physics,Van der Waerden notation[1][2] refers to the usage of two-componentspinors (Weyl spinors) in four spacetime dimensions. This is standard intwistor theory andsupersymmetry. It is named afterBartel Leendert van der Waerden.

Dotted indices

[edit]
Undotted indices (chiral indices)

Spinors with lower undotted indices have a left-handedchirality, and are called chiral indices.

Σleft=(ψα0){\displaystyle \Sigma _{\mathrm {left} }={\begin{pmatrix}\psi _{\alpha }\\0\end{pmatrix}}}
Dotted indices (anti-chiral indices)

Spinors with raised dotted indices, plus an overbar on the symbol (not index), are right-handed, and called anti-chiral indices.

Σright=(0χ¯α˙){\displaystyle \Sigma _{\mathrm {right} }={\begin{pmatrix}0\\{\bar {\chi }}^{\dot {\alpha }}\\\end{pmatrix}}}

Without the indices, i.e. "index free notation", an overbar is retained on right-handed spinor, since ambiguity arises between chirality when no index is indicated.

Hatted indices

[edit]

Indices which have hats are called Dirac indices, and are the set of dotted and undotted, or chiral and anti-chiral, indices. For example, if

α=1,2,α˙=1˙,2˙{\displaystyle \alpha =1,2\,,{\dot {\alpha }}={\dot {1}},{\dot {2}}}

then a spinor in the chiral basis is represented as

Σα^=(ψαχ¯α˙){\displaystyle \Sigma _{\hat {\alpha }}={\begin{pmatrix}\psi _{\alpha }\\{\bar {\chi }}^{\dot {\alpha }}\\\end{pmatrix}}}

where

α^=(α,α˙)=1,2,1˙,2˙{\displaystyle {\hat {\alpha }}=(\alpha ,{\dot {\alpha }})=1,2,{\dot {1}},{\dot {2}}}

In this notation theDirac adjoint (also called theDirac conjugate) is

Σα^=(χαψ¯α˙){\displaystyle \Sigma ^{\hat {\alpha }}={\begin{pmatrix}\chi ^{\alpha }&{\bar {\psi }}_{\dot {\alpha }}\end{pmatrix}}}

See also

[edit]

Notes

[edit]
  1. ^Van der Waerden B.L. (1929). "Spinoranalyse".Nachr. Ges. Wiss. Göttingen Math.-Phys. ohne Angabe:100–109.
  2. ^Veblen O. (1933)."Geometry of two-component Spinors".Proc. Natl. Acad. Sci. USA.19 (4):462–474.Bibcode:1933PNAS...19..462V.doi:10.1073/pnas.19.4.462.PMC 1086023.PMID 16577541.

References

[edit]
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Van_der_Waerden_notation&oldid=1233428983"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp