Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

V-type asteroid

From Wikipedia, the free encyclopedia
icon
This articlemay incorporate text from alarge language model. It may includehallucinated information,copyright violations, claims notverified in cited sources,original research, orfictitious references. Any such material should beremoved, and content with anunencyclopedic tone should be rewritten.(October 2025) (Learn how and when to remove this message)

V-type asteroids, also known asVestoids, are a class ofasteroids whosespectral type is characterized by a strong absorption feature at wavelengths longward of 0.75 μm, similar to that of4 Vesta, the second-most-massive asteroid in theasteroid belt.[1] These asteroids comprise approximately 6% ofmain-belt asteroids and are characterized by theirbasaltic surface composition, making them distinct from other asteroid types.[2]

Characteristics

[edit]

Physical Properties

[edit]

V-type asteroids are relatively bright objects with moderate to highalbedo values typically ranging from 0.20 to 0.40.[3] They are distinguished from other asteroid types by their basaltic composition, which indicates that they originated from differentiated parent bodies that underwent volcanic or igneous processing.[4]

The mean diameter of V-type asteroids varies considerably, from sub-kilometer objects to 4 Vesta itself with a mean diameter of approximately 525 kilometers.[5] Most V-types outside the Vesta family are relatively small, with diameters typically less than 10 kilometers.

Spectral Features

[edit]

The electromagnetic spectrum of V-type asteroids exhibits several diagnostic features:[6]

  • A very strong absorption feature longward of 0.75 μm attributed to Fe2+ inpyroxene
  • A second absorption feature centered near 0.9-1.0 μm, also due to pyroxene
  • Very steep red spectral slope shortward of 0.7 μm
  • A weak absorption feature at 0.506 μm due to Fe2+ spin-forbidden transitions in pyroxene

The Band I center position typically ranges from 0.90 to 0.94 μm, while the Band II center is usually located between 1.89 and 2.00 μm.[7] The ratio of Band II to Band I depths (BII/BI) typically ranges from 1.5 to 2.5 for V-type asteroids.

Composition

[edit]

V-type asteroids are composed primarily of basaltic material containingpyroxene andplagioclase feldspar.[8] The pyroxene composition is typically low-calcium pyroxene (orthopyroxene) with varying amounts of high-calcium pyroxene (clinopyroxene). The visible and near-infrared spectra of V-type asteroids closely resemble those of basalticachondrite meteorites, particularly theHED meteorites (Howardites, Eucrites, and Diogenites).[9]

Spectroscopic analysis has revealed compositional variations among V-types:[10]

  • Eucrite-like: High calcium content, consistent with basaltic eucrite meteorites
  • Diogenite-like: Low calcium content, consistent with orthopyroxenitic diogenite meteorites
  • Howardite-like: Intermediate composition, mixture of eucrite and diogenite material

Distribution

[edit]

Vesta Family Members

[edit]

The vast majority of V-type asteroids are members of theVesta family along with Vesta itself.[11] The Vesta family is one of the largest asteroid families with more than 15,000 known members.[12] Spectroscopic studies indicate that approximately 85% of the members of the Vesta dynamical family are V-type asteroids.[13]

Mars-Crossing V-types

[edit]

Several V-type asteroids have been identified asMars-crossers, including:[14][failed verification]

Recent systematic searches have confirmed three additional V-type asteroids in the Mars crossing region through spectroscopic observations.[15]

Near-Earth V-types

[edit]

Several V-type asteroids have been identified amongNear-Earth objects:[16]

Non-Vesta Family V-types

[edit]

There is a scattered group of V-type asteroids in the general vicinity of the Vesta family but not dynamically associated with it.[17] As of current surveys, 22 V-type asteroids have been identified outside the Vesta family in the inner asteroid belt:[18]

Middle and Outer Main Belt

[edit]

Recent spectroscopic surveys have identified V-type asteroids throughout the main belt:[21]

  • Ten confirmed V-types orbiting in the middle main belt (2.5 < a < 2.82 AU)
  • Five V-types in the outer main belt (a > 2.82 AU)
  • Two V-types identified beyond 3.3 AU

Origin and Formation

[edit]

Vesta Origin Hypothesis

[edit]

The predominant theory suggests that most V-type asteroids originated as fragments of4 Vesta's crust during large impact events.[22]NASA'sDawn mission identified two enormous impact basins on Vesta's southern hemisphere:[23]

  • Veneneia basin: ~395 km diameter, formed approximately 2.1 billion years ago
  • Rheasilvia basin: ~505 km diameter, formed approximately 1 billion years ago

These impact events excavated and ejected large amounts of basaltic material from Vesta's crust and upper mantle.[24] The ejected fragments formed the Vesta family and are thought to be the source of the HED meteorites that fall to Earth.

Dynamical Evolution

[edit]

V-type asteroids ejected from Vesta have undergone complex dynamical evolution:[25]

  • Fragments initially formed a collisional family near Vesta
  • Yarkovsky effect andYORP effect caused slow orbital drift
  • Interaction with mean-motion and secular resonances dispersed fragments
  • Some fragments entered the 3:1 and ν6 resonances, allowing delivery to Earth-crossing orbits

Multiple Parent Body Hypothesis

[edit]

Recent research indicates that V-type asteroids in the middle and outer main belt are unlikely to have originated from Vesta.[26] Extensive numerical simulations demonstrate the lack of efficient dynamical routes to transport Vesta fragments beyond 2.5 AU.[27]

The asteroid1459 Magnya provides compelling evidence for multiple differentiated parent bodies:[28]

  • Located at 3.14 AU, beyond plausible Vesta ejecta dispersal
  • Spectroscopic differences from Vesta suggest distinct parent body
  • May represent remnant of destroyed differentiated asteroid

Classification Methods

[edit]

Photometric Identification

[edit]

V-type asteroids can be identified through various observational methods:[29]

  • Visible photometry using SDSS filters (u, g, r, i, z)
  • Near-infrared colors from 2MASS and WISE surveys
  • Combined visible and near-infrared spectroscopy

Spectroscopic Confirmation

[edit]

Definitive classification requires spectroscopic observations covering the 0.4-2.5 μm range to identify characteristic pyroxene absorption bands.[30] Key diagnostic parameters include:

  • Band I center position (0.90-0.94 μm)
  • Band II center position (1.89-2.00 μm)
  • Band area ratio (BAR = Band II area/Band I area)
  • Spectral slope

J-type Subclassification

[edit]

A J-type classification has been proposed for asteroids exhibiting particularly strong 1 μm absorption bands similar todiogenite meteorites, with Band I centers >0.95 μm.[31] These objects likely sample deeper crustal or upper mantle material from differentiated parent bodies.

Notable Examples

[edit]

4 Vesta

[edit]

4 Vesta is the archetype of the V-type class and the only intact differentiated asteroid accessible to detailed study.[32] Key characteristics:

  • Mean diameter: 525.4 ± 0.2 km
  • Bulk density: 3.456 ± 0.035 g/cm3
  • Differentiated structure with metallic core (~220 km diameter)
  • Basaltic crust thickness: 12–20 km

1459 Magnya

[edit]

1459 Magnya represents the most significant non-Vestoid V-type asteroid:[33]

  • Semi-major axis: 3.14 AU
  • Diameter: ~17 km
  • Spectroscopic properties distinct from Vesta
  • Possible fragment of destroyed differentiated asteroid

2579 Spartacus

[edit]

2579 Spartacus shows unusual spectroscopic properties suggesting deep origin:[34]

  • Enhanced olivine content
  • May sample mantle material
  • Located at 2.71 AU

Significance

[edit]

Solar System Evolution

[edit]

V-type asteroids provide crucial constraints on early Solar System processes:[35]

  • Timeline of planetesimal differentiation (first ~5 Myr)
  • Extent of igneous processing in the asteroid belt
  • Number and distribution of differentiated parent bodies
  • Collisional evolution of the asteroid belt

Meteorite Connections

[edit]

V-type asteroids are the likely source of HED meteorites, providing ground-truth for asteroid composition studies.[36] This connection enables:

  • Laboratory analysis of asteroid material
  • Calibration of remote sensing techniques
  • Understanding of space weathering processes
  • Chronology of asteroid belt evolution

Future Research

[edit]

Ongoing and future research priorities include:[37]

  • Spectroscopic surveys to identify additional V-types
  • Detailed compositional studies of non-Vestoid V-types
  • Dynamical modeling of V-type distribution
  • Search for olivine-rich V-types sampling mantle material

See also

[edit]

References

[edit]
  1. ^Bus, S.J.; Binzel, R.P. (2002). "Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy".Icarus.158 (1):146–177.Bibcode:2002Icar..158..146B.doi:10.1006/icar.2002.6856.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^Moskovitz, N.A.; et al. (2008). "A spectroscopic comparison of HED meteorites and V-type asteroids in the inner Main Belt".Icarus.198 (1):77–90.arXiv:0807.3951.Bibcode:2008Icar..198...77M.doi:10.1016/j.icarus.2008.07.006.
  3. ^Usui, F.; et al. (2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey".Publications of the Astronomical Society of Japan.63 (5):1117–1138.Bibcode:2011PASJ...63.1117U.doi:10.1093/pasj/63.5.1117.
  4. ^McCord, T.B.; Adams, J.B.; Johnson, T.V. (1970). "Asteroid Vesta: Spectral Reflectivity and Compositional Implications".Science.168 (3938):1445–1447.Bibcode:1970Sci...168.1445M.doi:10.1126/science.168.3938.1445.PMID 17731590.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^Russell, C.T.; et al. (2012). "Dawn at Vesta: Testing the Protoplanetary Paradigm".Science.336 (6082):684–686.Bibcode:2012Sci...336..684R.doi:10.1126/science.1219381.PMID 22582253.
  6. ^Pieters, C.M.; et al. (1985). "The Nature of Asteroid 4 Vesta from Mineralogical Studies of the HED Meteorites".Journal of Geophysical Research.90 (B14):12393–12413.Bibcode:1985JGR....9012393P.doi:10.1029/JB090iB14p12393.
  7. ^Gaffey, M.J. (1997). "Surface Lithologic Heterogeneity of Asteroid 4 Vesta".Icarus.127 (1):130–157.Bibcode:1997Icar..127..130G.doi:10.1006/icar.1997.5680.
  8. ^Burbine, T.H.; et al. (2001)."Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences".Meteoritics & Planetary Science.36 (6):761–781.Bibcode:2001M&PS...36..761B.doi:10.1111/j.1945-5100.2001.tb01915.x.
  9. ^McSween, H.Y.; et al. (2011). "HED Meteorites and Their Relationship to the Geology of Vesta and the Dawn Mission".Space Science Reviews.163 (1–4):141–174.Bibcode:2011SSRv..163..141M.doi:10.1007/s11214-010-9637-z.
  10. ^Duffard, R.; et al. (2004). "Mineralogical characterization of some basaltic asteroids in the neighborhood of (4) Vesta: first results".Icarus.171 (1):120–132.Bibcode:2004Icar..171..120D.doi:10.1016/j.icarus.2004.05.004.
  11. ^Nesvorný, D.; et al. (2008). "Fugitives from the Vesta family".Icarus.193 (1):85–95.Bibcode:2008Icar..193...85N.doi:10.1016/j.icarus.2007.08.034.
  12. ^Nesvorný, D. (2015). "Nesvorný HCM Asteroid Families V3.0".NASA Planetary Data System. EAR-A-VARGBDET-5-NESVORNYFAM-V3.0.
  13. ^Moskovitz, N.A.; et al. (2010). "A spectroscopic investigation of the Vesta family".Icarus.210 (2):674–684.Bibcode:2010Icar..210..674M.doi:10.1016/j.icarus.2010.07.017.
  14. ^Ribeiro, A.O.; et al. (2016)."Dynamical study of the Atira group of asteroids".Monthly Notices of the Royal Astronomical Society.458 (4):4471–4476.Bibcode:2016MNRAS.458.4471R.doi:10.1093/mnras/stw642.
  15. ^Roig, F.; Gil-Hutton, R. (2006). "Selecting candidate V-type asteroids from the analysis of the Sloan Digital Sky Survey colors".Icarus.183 (2):411–419.Bibcode:2006Icar..183..411R.doi:10.1016/j.icarus.2006.04.002.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^Binzel, R.P.; et al. (2004). "Dynamical and compositional assessment of near-Earth object mission targets".Meteoritics & Planetary Science.39 (3):351–366.Bibcode:2004M&PS...39..351B.doi:10.1111/j.1945-5100.2004.tb00098.x.
  17. ^Lazzaro, D.; et al. (2004). "Discovery of a basaltic asteroid in the outer Main Belt".Science.305 (5690):1572–1574.Bibcode:2004Sci...305.1572L.doi:10.1126/science.1100416 (inactive 11 September 2025).{{cite journal}}: CS1 maint: DOI inactive as of September 2025 (link)
  18. ^Hardersen, P.S.; et al. (2014). "More chips off of asteroid (4) Vesta: Characterization of eight Vestoid and V-type asteroids with near-infrared spectroscopy".Icarus.242:269–282.arXiv:1408.2731.Bibcode:2014Icar..242..269H.doi:10.1016/j.icarus.2014.08.020.
  19. ^Hardersen, P.S.; Gaffey, M.J.; Abell, P.A. (2004). "Mineralogy of Asteroid 1459 Magnya and implications for its origin".Icarus.167 (1):170–177.Bibcode:2004Icar..167..170H.doi:10.1016/j.icarus.2003.09.022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^Sunshine, J.M.; et al. (2004). "High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites".Meteoritics & Planetary Science.39 (8):1343–1357.Bibcode:2004M&PS...39.1343S.doi:10.1111/j.1945-5100.2004.tb00950.x.
  21. ^Migliorini, A.; et al. (2021)."Characterization of V-type asteroids orbiting in the middle and outer main belt".Monthly Notices of the Royal Astronomical Society.504 (2):2019–2032.Bibcode:2021MNRAS.504.2019M.doi:10.1093/mnras/stab332.
  22. ^Asphaug, E. (1997). "Impact origin of the Vesta family".Meteoritics & Planetary Science.32 (6):965–980.Bibcode:1997M&PS...32..965A.doi:10.1111/j.1945-5100.1997.tb01584.x.
  23. ^Schenk, P.; et al. (2012). "The Geologically Recent Giant Impact Basins at Vesta's South Pole".Science.336 (6082):694–697.Bibcode:2012Sci...336..694S.doi:10.1126/science.1223272.PMID 22582256.
  24. ^Jutzi, M.; et al. (2013)."The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions".Nature.494 (7436):207–210.Bibcode:2013Natur.494..207J.doi:10.1038/nature11892.PMID 23407535.
  25. ^Carruba, V.; et al. (2005). "On the V-type asteroids outside the Vesta family. I. Interplay of nonlinear secular resonances and the Yarkovsky effect: the cases of 956 Elisa and 809 Lundia".Astronomy and Astrophysics.441 (2):819–829.arXiv:astro-ph/0506656.Bibcode:2005A&A...441..819C.doi:10.1051/0004-6361:20053355.
  26. ^Carruba, V.; Michtchenko, T.A. (2007). "A frequency approach to identifying asteroid families II. Families interacting with nonlinear secular resonances and low-order mean-motion resonances".Astronomy and Astrophysics.475 (3):1145–1158.Bibcode:2007A&A...475.1145C.doi:10.1051/0004-6361:20077689.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. ^Roig, F.; et al. (2008). "V-type asteroids in the middle main belt".Icarus.194 (1):125–136.arXiv:0707.1012.Bibcode:2008Icar..194..125R.doi:10.1016/j.icarus.2007.10.004.
  28. ^Michtchenko, T.A.; et al. (2002). "Origin of the basaltic asteroid 1459 Magnya: A dynamical and mineralogical study of the outer main belt".Icarus.158 (2):343–359.Bibcode:2002Icar..158..343M.doi:10.1006/icar.2002.6871.
  29. ^Carvano, J.M.; et al. (2010). "SDSS-based taxonomic classification and orbital distribution of main belt asteroids".Astronomy and Astrophysics.510: A43.Bibcode:2010A&A...510A..43C.doi:10.1051/0004-6361/200913322.
  30. ^DeMeo, F.E.; et al. (2009)."An extension of the Bus asteroid taxonomy into the near-infrared".Icarus.202 (1):160–180.Bibcode:2009Icar..202..160D.doi:10.1016/j.icarus.2009.02.005.
  31. ^Bus, S.J.; Binzel, R.P. (2002). "Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations".Icarus.158 (1):106–145.Bibcode:2002Icar..158..106B.doi:10.1006/icar.2002.6857.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^Russell, C.T.; Raymond, C.A. (2011). "The Dawn Mission to Vesta and Ceres".Space Science Reviews.163 (1–4):3–23.Bibcode:2011SSRv..163....3R.doi:10.1007/s11214-011-9836-2.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^Hardersen, P.S.; et al. (2018). "Basaltic asteroid (1459) Magnya: Possible fragment of Vesta or a distinct parent body?".AAS/Division for Planetary Sciences Meeting Abstracts.50: 305.07.Bibcode:2018DPS....5030507H.
  34. ^Burbine, T.H.; et al. (2009). "Olivine-pyroxene distribution of S-type asteroids throughout the main belt".Meteoritics & Planetary Science.44 (9):1331–1341.Bibcode:2009M&PS...44.1331B.doi:10.1111/j.1945-5100.2009.tb01225.x.
  35. ^Scott, E.R.D.; et al. (2015).Early Impact History and Dynamical Origin of Differentiated Meteorites and Asteroids. pp. 573–595.Bibcode:2015aste.book..573S.doi:10.2458/azu_uapress_9780816532131-ch030.ISBN 978-0-8165-3213-1.{{cite book}}:|journal= ignored (help)
  36. ^McSween, H.Y.; et al. (2013). "Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites".Meteoritics & Planetary Science.48 (11):2090–2104.Bibcode:2013M&PS...48.2090M.doi:10.1111/maps.12108.
  37. ^Binzel, R.P.; et al. (2019). "Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS)".Icarus.324:41–76.arXiv:2004.05090.Bibcode:2019Icar..324...41B.doi:10.1016/j.icarus.2018.12.035.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=V-type_asteroid&oldid=1319758318"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp