Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Uridine diphosphateN-acetylglucosamine

From Wikipedia, the free encyclopedia

Uridine diphosphateN-acetylglucosamine
Names
IUPAC name
Uridine 5′-(2-acetamido-2-deoxy-α-D-glucopyranosyl dihydrogen diphosphate)
Systematic IUPAC name
O1-[(2R,3R,4R,5S,6R)-3-Acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]O3-{[(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxyoxolan-2-yl]methyl} dihydrogen diphosphate
Other names
UDP-N-acetylglucosamine; UDP-GlcNAc
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
DrugBank
KEGG
  • InChI=1S/C17H27N3O17P2/c1-6(22)18-10-13(26)11(24)7(4-21)35-16(10)36-39(31,32)37-38(29,30)33-5-8-12(25)14(27)15(34-8)20-3-2-9(23)19-17(20)28/h2-3,7-8,10-16,21,24-27H,4-5H2,1H3,(H,18,22)(H,29,30)(H,31,32)(H,19,23,28)/t7-,8-,10-,11-,12-,13-,14-,15-,16-/m1/s1
    Key: LFTYTUAZOPRMMI-CFRASDGPSA-N
  • CC(=O)N[C@@H]1[C@H]([C@@H]([C@H](O[C@@H]1OP(=O)(O)OP(=O)(O)OC[C@@H]2[C@H]([C@H]([C@@H](O2)N3C=CC(=O)NC3=O)O)O)CO)O)O
Properties
C17H27N3O17P2
Molar mass607.355 g·mol−1
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Uridine diphosphateN-acetylglucosamine orUDP-GlcNAc is anucleotide sugar and acoenzyme inmetabolism. It is used byglycosyltransferases to transferN-acetylglucosamine residues to substrates. UDP-GlcNAc is used for makingglycosaminoglycans,proteoglycans, andglycolipids.[1]D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of allnitrogen-containing sugars.[2] To be specific, glucosamine-6-phosphate is synthesized fromfructose 6-phosphate andglutamine[3] as the first step of thehexosamine biosynthesis pathway.[4] The end-product of this pathway is UDP-GlcNAc. Some enzymes involved in the biosynthesis of UDP-GlcNAc vary betweenprokaryotic andeukaryotic organisms, serving as potential drug targets for antibiotic development.[5]

Biosignaling

[edit]

UDP-GlcNAc is extensively involved inintracellular signaling as a substrate forO-linkedN-acetylglucosamine transferases (OGTs) to install theO-GlcNAcpost-translational modification in a wide range of species. It is also involved innuclear pore formation and nuclear signalling. OGTs and OG-ases play an important role in the structure of thecytoskeleton. In mammals, there is enrichment of OGT transcripts in thepancreasbeta-cells, and UDP-GlcNAc is thought to be part of the glucose sensing mechanism. There is also evidence that it plays a part ininsulin sensitivity in other cells. In plants, it is involved in the control ofgibberellin production.[6] In eukaryoticstem cells, the presence of UDP-GlcNAc is essential for maintainingpluripotency, which is sustained through O-GlcNAcylation.[7]

Clostridium novyi type A alpha-toxin is anO-linkedN-actetylglucosamine transferase acting onRho proteins and causing the collapse of the cytoskeleton.

There is a possible relationship between the inhibition of oxidative phosphorylation and reduced UDP-GlcNAc levels.[7]

Prokaryotic and eukaryotic biosynthesis

[edit]

UDP-GlcNAc biosynthesis is not regulated by the same enzymes in prokaryotic and eukaryotic organisms. The lack of the bifunctionalGlmUacetyltransferase and pyrophosphorylase in eukaryotes makes it a possible target for blocking UDP-GlcNAc synthesis (an essential precursor for peptidoglycan synthesis) in bacteria without affecting host cells.[5]

References

[edit]
  1. ^Milewski S, Gabriel I, Olchowy J (2006)."Enzymes of UDP-GlcNAc biosynthesis in yeast".Yeast.23 (1):1–14.doi:10.1002/yea.1337.PMID 16408321.
  2. ^Roseman S (2001)."Reflections on glycobiology".The Journal of Biological Chemistry.276 (45):41527–42.doi:10.1074/jbc.R100053200.PMID 11553646.
  3. ^Sudhamoy Ghosh, Blumenthal HJ, Davidson E, Roseman S (1960-05-01)."Glucosamine Metabolism".Journal of Biological Chemistry.235 (5):1265–73.doi:10.1016/S0021-9258(18)69397-4.PMID 13827775.
  4. ^International Union of Biochemistry and Molecular Biology
  5. ^abWyllie JA, McKay MV, Barrow AS, Soares da Costa TP (2022)."Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics?".IUBMB Life.74 (12):1232–1252.doi:10.1002/iub.2664.ISSN 1521-6551.PMC 10087520.PMID 35880704.
  6. ^Hanover JA (2001)."Glycan-dependent signaling: O-linked N-acetylglucosamine".The FASEB Journal.15 (11):1865–1876.CiteSeerX 10.1.1.324.6370.doi:10.1096/fj.01-0094rev.PMID 11532966.
  7. ^abCao J, Li M, Liu K, Shi X, Sui N, Yao Y, Wang X, Li S, Tian Y, Tan S, Zhao Q, Wang L, Chai X, Zhang L, Liu C (2023-05-01)."Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine".Protein & Cell.14 (5):376–381.doi:10.1093/procel/pwac009.ISSN 1674-800X.PMC 10166152.PMID 37155316.
Receptor
(ligands)
P0 (adenine)
P1
(adenosine)
P2
(nucleotide)
P2X
(ATPTooltip Adenosine triphosphate)
P2Y
Transporter
(blockers)
CNTsTooltip Concentrative nucleoside transporters
ENTsTooltip Equilibrative nucleoside transporters
PMATTooltip Plasma membrane monoamine transporter
Enzyme
(inhibitors)
XOTooltip Xanthine oxidase
Others
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=Uridine_diphosphate_N-acetylglucosamine&oldid=1302588296"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp