Complex matrix whose conjugate transpose equals its inverse
For matrices with orthogonality over the real number field, see
orthogonal matrix . For the restriction on the allowed evolution of quantum systems that ensures the sum of probabilities of all possible outcomes of any event always equals 1, see
unitarity .
Inlinear algebra , aninvertible complex square matrix U isunitary if itsmatrix inverse U −1 equals itsconjugate transpose U * , that is, if
U ∗ U = U U ∗ = I , {\displaystyle U^{*}U=UU^{*}=I,}
whereI is theidentity matrix .
Inphysics , especially inquantum mechanics , the conjugate transpose is referred to as theHermitian adjoint of a matrix and is denoted by adagger († {\displaystyle \dagger } ), so the equation above is written
U † U = U U † = I . {\displaystyle U^{\dagger }U=UU^{\dagger }=I.}
A complex matrixU isspecial unitary if it is unitary and itsmatrix determinant equals1 .
Forreal numbers , the analogue of a unitary matrix is anorthogonal matrix . Unitary matrices have significant importance in quantum mechanics because they preservenorms , and thus,probability amplitudes .
For any unitary matrixU of finite size, the following hold:
Given two complex vectorsx andy , multiplication byU preserves theirinner product ; that is,⟨U x ,U y ⟩ = ⟨x ,y ⟩ . U isnormal (U ∗ U = U U ∗ {\displaystyle U^{*}U=UU^{*}} ).U isdiagonalizable ; that is,U isunitarily similar to a diagonal matrix, as a consequence of thespectral theorem . Thus,U has a decomposition of the formU = V D V ∗ , {\displaystyle U=VDV^{*},} whereV is unitary, andD is diagonal and unitary.Theeigenvalues ofU {\displaystyle U} lie on theunit circle , as doesdet ( U ) {\displaystyle \det(U)} . Theeigenspaces ofU {\displaystyle U} are orthogonal. U can be written asU =e iH , wheree indicates thematrix exponential ,i is the imaginary unit, andH is aHermitian matrix .For any nonnegativeinteger n , the set of alln × n unitary matrices with matrix multiplication forms agroup , called theunitary group U(n ) .
Every square matrix with unit Euclidean norm is the average of two unitary matrices.[ 1]
Equivalent conditions [ edit ] IfU is a square, complex matrix, then the following conditions are equivalent:[ 2]
U {\displaystyle U} is unitary.U ∗ {\displaystyle U^{*}} is unitary.U {\displaystyle U} is invertible withU − 1 = U ∗ {\displaystyle U^{-1}=U^{*}} .The columns ofU {\displaystyle U} form anorthonormal basis ofC n {\displaystyle \mathbb {C} ^{n}} with respect to the usual inner product. In other words,U ∗ U = I {\displaystyle U^{*}U=I} . The rows ofU {\displaystyle U} form an orthonormal basis ofC n {\displaystyle \mathbb {C} ^{n}} with respect to the usual inner product. In other words,U U ∗ = I {\displaystyle UU^{*}=I} . U {\displaystyle U} is anisometry with respect to the usual norm. That is,‖ U x ‖ 2 = ‖ x ‖ 2 {\displaystyle \|Ux\|_{2}=\|x\|_{2}} for allx ∈ C n {\displaystyle x\in \mathbb {C} ^{n}} , where‖ x ‖ 2 = ∑ i = 1 n | x i | 2 {\textstyle \|x\|_{2}={\sqrt {\sum _{i=1}^{n}|x_{i}|^{2}}}} .U {\displaystyle U} is anormal matrix (equivalently, there is an orthonormal basis formed by eigenvectors ofU {\displaystyle U} ) with eigenvalues lying on the unit circle.Elementary constructions [ edit ] 2 × 2 unitary matrix[ edit ] One general expression of a2 × 2 unitary matrix isU = [ a b − e i φ b ∗ e i φ a ∗ ] , | a | 2 + | b | 2 = 1 , {\displaystyle U={\begin{bmatrix}a&b\\-e^{i\varphi }b^{*}&e^{i\varphi }a^{*}\\\end{bmatrix}},\qquad \left|a\right|^{2}+\left|b\right|^{2}=1\ ,}
which depends on 4 real parameters (the phase ofa , the phase ofb , the relative magnitude betweena andb , and the angleφ ) and * is thecomplex conjugate . The form is configured so thedeterminant of such a matrix isdet ( U ) = e i φ . {\displaystyle \det(U)=e^{i\varphi }~.}
The sub-group of those elementsU {\displaystyle U} withdet ( U ) = 1 {\displaystyle \det(U)=1} is called thespecial unitary group SU(2).
Among several alternative forms, the matrixU can be written in this form: U = e i φ / 2 [ e i α cos θ e i β sin θ − e − i β sin θ e − i α cos θ ] , {\displaystyle \ U=e^{i\varphi /2}{\begin{bmatrix}e^{i\alpha }\cos \theta &e^{i\beta }\sin \theta \\-e^{-i\beta }\sin \theta &e^{-i\alpha }\cos \theta \\\end{bmatrix}}\ ,}
wheree i α cos θ = a {\displaystyle e^{i\alpha }\cos \theta =a} ande i β sin θ = b , {\displaystyle e^{i\beta }\sin \theta =b,} above, and the anglesφ , α , β , θ {\displaystyle \varphi ,\alpha ,\beta ,\theta } can take any values.
By introducingα = ψ + δ {\displaystyle \alpha =\psi +\delta } andβ = ψ − δ , {\displaystyle \beta =\psi -\delta ,} has the following factorization:
U = e i φ / 2 [ e i ψ 0 0 e − i ψ ] [ cos θ sin θ − sin θ cos θ ] [ e i δ 0 0 e − i δ ] . {\displaystyle U=e^{i\varphi /2}{\begin{bmatrix}e^{i\psi }&0\\0&e^{-i\psi }\end{bmatrix}}{\begin{bmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \\\end{bmatrix}}{\begin{bmatrix}e^{i\delta }&0\\0&e^{-i\delta }\end{bmatrix}}~.}
This expression highlights the relation between2 × 2 unitary matrices and2 × 2 orthogonal matrices of angleθ .
Another factorization is[ 3]
U = [ cos ρ − sin ρ sin ρ cos ρ ] [ e i ξ 0 0 e i ζ ] [ cos σ sin σ − sin σ cos σ ] . {\displaystyle U={\begin{bmatrix}\cos \rho &-\sin \rho \\\sin \rho &\;\cos \rho \\\end{bmatrix}}{\begin{bmatrix}e^{i\xi }&0\\0&e^{i\zeta }\end{bmatrix}}{\begin{bmatrix}\;\cos \sigma &\sin \sigma \\-\sin \sigma &\cos \sigma \\\end{bmatrix}}~.}
Many other factorizations of a unitary matrix in basic matrices are possible.[ 4] [ 5] [ 6] [ 7] [ 8] [ 9]
^ Li, Chi-Kwong; Poon, Edward (2002). "Additive decomposition of real matrices".Linear and Multilinear Algebra .50 (4):321– 326.doi :10.1080/03081080290025507 .S2CID 120125694 . ^ Horn, Roger A.; Johnson, Charles R. (2013).Matrix Analysis .Cambridge University Press .doi :10.1017/CBO9781139020411 .ISBN 9781139020411 . ^ Führ, Hartmut; Rzeszotnik, Ziemowit (2018)."A note on factoring unitary matrices" .Linear Algebra and Its Applications .547 :32– 44.doi :10.1016/j.laa.2018.02.017 .ISSN 0024-3795 .S2CID 125455174 . ^ Williams, Colin P. (2011). "Quantum gates". In Williams, Colin P. (ed.).Explorations in Quantum Computing . Texts in Computer Science. London, UK: Springer. p. 82.doi :10.1007/978-1-84628-887-6_2 .ISBN 978-1-84628-887-6 . ^ Nielsen, M.A. ;Chuang, Isaac (2010).Quantum Computation and Quantum Information . Cambridge, UK:Cambridge University Press . p. 20.ISBN 978-1-10700-217-3 .OCLC 43641333 .^ Barenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; et al. (1 November 1995). "Elementary gates for quantum computation".Physical Review A .52 (5). American Physical Society (APS):3457– 3467, esp.p. 3465.arXiv :quant-ph/9503016 .Bibcode :1995PhRvA..52.3457B .doi :10.1103/physreva.52.3457 .ISSN 1050-2947 .PMID 9912645 .S2CID 8764584 . ^ Marvian, Iman (10 January 2022)."Restrictions on realizable unitary operations imposed by symmetry and locality" .Nature Physics .18 (3):283– 289.arXiv :2003.05524 .Bibcode :2022NatPh..18..283M .doi :10.1038/s41567-021-01464-0 .ISSN 1745-2481 .S2CID 245840243 . ^ Jarlskog, Cecilia (2006). "Recursive parameterisation and invariant phases of unitary matrices".Journal of Mathematical Physics .47 (1): 013507.arXiv :math-ph/0510034 .Bibcode :2006JMP....47a3507J .doi :10.1063/1.2159069 . ^ Alhambra, Álvaro M. (10 January 2022)."Forbidden by symmetry" . News & Views.Nature Physics .18 (3):235– 236.Bibcode :2022NatPh..18..235A .doi :10.1038/s41567-021-01483-x .ISSN 1745-2481 .S2CID 256745894 .The physics of large systems is often understood as the outcome of the local operations among its components. Now, it is shown that this picture may be incomplete in quantum systems whose interactions are constrained by symmetries.