Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Uniformly smooth space

From Wikipedia, the free encyclopedia

Inmathematics, auniformly smooth space is anormed vector spaceX{\displaystyle X} satisfying the property that for everyϵ>0{\displaystyle \epsilon >0} there existsδ>0{\displaystyle \delta >0} such that ifx,yX{\displaystyle x,y\in X} withx=1{\displaystyle \|x\|=1} andyδ{\displaystyle \|y\|\leq \delta } then

x+y+xy2+ϵy.{\displaystyle \|x+y\|+\|x-y\|\leq 2+\epsilon \|y\|.}

Themodulus of smoothness of a normed spaceX is the function ρX defined for everyt > 0 by the formula[1]

ρX(t)=sup{x+y+xy21:x=1,y=t}.{\displaystyle \rho _{X}(t)=\sup {\Bigl \{}{\frac {\|x+y\|+\|x-y\|}{2}}-1\,:\,\|x\|=1,\;\|y\|=t{\Bigr \}}.}

The triangle inequality yields thatρX(t ) ≤t. The normed spaceX is uniformly smooth if and only ifρX(t ) /t tends to 0 ast tends to 0.

Properties

[edit]
ρX(t)=sup{tε/2δX(ε):ε[0,2]},t0,{\displaystyle \rho _{X^{*}}(t)=\sup\{t\varepsilon /2-\delta _{X}(\varepsilon ):\varepsilon \in [0,2]\},\quad t\geq 0,}
and the maximal convex function majorated by the modulus of convexity δX is given by[4]
δ~X(ε)=sup{εt/2ρX(t):t0}.{\displaystyle {\tilde {\delta }}_{X}(\varepsilon )=\sup\{\varepsilon t/2-\rho _{X^{*}}(t):t\geq 0\}.}
Furthermore,[5]
δX(ε/2)δ~X(ε)δX(ε),ε[0,2].{\displaystyle \delta _{X}(\varepsilon /2)\leq {\tilde {\delta }}_{X}(\varepsilon )\leq \delta _{X}(\varepsilon ),\quad \varepsilon \in [0,2].}
  • A Banach space is uniformly smooth if and only if the limit
limt0x+tyxt{\displaystyle \lim _{t\to 0}{\frac {\|x+ty\|-\|x\|}{t}}}
exists uniformly for allx,ySX{\displaystyle x,y\in S_{X}} (whereSX{\displaystyle S_{X}} denotes theunit sphere ofX{\displaystyle X}).
  • When 1 <p < ∞, theLp-spaces are uniformly smooth (and uniformly convex).

Enflo proved[6] that the class of Banach spaces that admit an equivalent uniformly convex norm coincides with the class ofsuper-reflexive Banach spaces, introduced byRobert C. James.[7] As a space is super-reflexive if and only if its dual is super-reflexive, it follows that the class of Banach spaces that admit an equivalent uniformly convex norm coincides with the class of spaces that admit an equivalent uniformly smooth norm. ThePisier renorming theorem[8] states that a super-reflexive space X admits an equivalent uniformly smooth norm for which the modulus of smoothness ρX satisfies, for some constant C and some p > 1

ρX(t)Ctp,t>0.{\displaystyle \rho _{X}(t)\leq C\,t^{p},\quad t>0.}

It follows that every super-reflexive spaceY admits an equivalent uniformly convex norm for which themodulus of convexity satisfies, for some constant c > 0 and some positive realq

δY(ε)cεq,ε[0,2].{\displaystyle \delta _{Y}(\varepsilon )\geq c\,\varepsilon ^{q},\quad \varepsilon \in [0,2].}

If a normed space admits two equivalent norms, one uniformly convex and one uniformly smooth, the Asplund averaging technique[9] produces another equivalent norm that is both uniformly convex and uniformly smooth.

See also

[edit]

Notes

[edit]
  1. ^see Definition 1.e.1, p. 59 inLindenstrauss & Tzafriri (1979).
  2. ^Proposition 1.e.3, p. 61 inLindenstrauss & Tzafriri (1979).
  3. ^Proposition 1.e.2, p. 61 inLindenstrauss & Tzafriri (1979).
  4. ^Proposition 1.e.6, p. 65 inLindenstrauss & Tzafriri (1979).
  5. ^Lemma 1.e.7 and 1.e.8, p. 66 inLindenstrauss & Tzafriri (1979).
  6. ^Enflo, Per (1973), "Banach spaces which can be given an equivalent uniformly convex norm",Israel Journal of Mathematics,13 (3–4):281–288,doi:10.1007/BF02762802
  7. ^James, Robert C. (1972), "Super-reflexive Banach spaces",Canadian Journal of Mathematics,24 (5):896–904,doi:10.4153/CJM-1972-089-7
  8. ^Pisier, Gilles (1975), "Martingales with values in uniformly convex spaces",Israel Journal of Mathematics,20 (3–4):326–350,doi:10.1007/BF02760337
  9. ^Asplund, Edgar (1967), "Averaged norms",Israel Journal of Mathematics,5 (4):227–233,doi:10.1007/BF02771611

References

[edit]
Types of Banach spaces
Banach spaces are:
Function space Topologies
Linear operators
Operator theory
Theorems
Analysis
Types of sets
Subsets / set operations
Examples
Applications
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Uniformly_smooth_space&oldid=1170995595"
Categories:

[8]ページ先頭

©2009-2026 Movatter.jp