Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Uniform tilings in hyperbolic plane

From Wikipedia, the free encyclopedia
Symmetric subdivision in hyperbolic geometry
Examples of uniform tilings
SphericalEuclideanHyperbolic

{5,3}
5.5.5

{6,3}
6.6.6

{7,3}
7.7.7

{∞,3}
∞.∞.∞
Regular tilings {p,q} of the sphere, Euclidean plane, and hyperbolic plane using regular pentagonal, hexagonal and heptagonal and apeirogonal faces.

t{5,3}
10.10.3

t{6,3}
12.12.3

t{7,3}
14.14.3

t{∞,3}
∞.∞.3
Truncated tilings have 2p.2p.q vertex figures from regular {p,q}.

r{5,3}
3.5.3.5

r{6,3}
3.6.3.6

r{7,3}
3.7.3.7

r{∞,3}
3.∞.3.∞
Quasiregular tilings are similar to regular tilings but alternate two types of regular polygon around each vertex.

rr{5,3}
3.4.5.4

rr{6,3}
3.4.6.4

rr{7,3}
3.4.7.4

rr{∞,3}
3.4.∞.4
Semiregular tilings have more than one type of regular polygon.

tr{5,3}
4.6.10

tr{6,3}
4.6.12

tr{7,3}
4.6.14

tr{∞,3}
4.6.∞
Omnitruncated tilings have three or more even-sided regular polygons.
Construction of Archimedean Solids and Tessellations
SymmetryTriangular dihedral symmetry
Tetrahedral
Octahedral
Icosahedral
p6m symmetry
[3,7] symmetry
[3,8] symmetry
Starting solid
Operation
Symbol
{p,q}
Triangular hosohedron
{2,3}
Triangular dihedron
{3,2}
Tetrahedron
{3,3}
Cube
{4,3}
Octahedron
{3,4}
Dodecahedron
{5,3}
Icosahedron
{3,5}
Hexagonal tiling
{6,3}
Triangular tiling
{3,6}
Heptagonal tiling
{7,3}
Order-7 triangular tiling
{3,7}
Octagonal tiling
{8,3}
Order-8 triangular tiling
{3,8}
Truncation (t)t{p,q}
triangular prism
truncated triangular dihedron
(Half of the "edges" count as degeneratedigon faces. The other half are normal edges.)
truncated tetrahedron
truncated cube
truncated octahedron
truncated dodecahedron
truncated icosahedron
Truncated hexagonal tiling
Truncated triangular tiling
Truncated heptagonal tiling
Truncated order-7 triangular tiling
Truncated octagonal tiling
Truncated order-8 triangular tiling
Rectification (r)
Ambo (a)
r{p,q}
tridihedron
(All of the "edges" count as degeneratedigon faces.)
tetratetrahedron
cuboctahedron
icosidodecahedron
Trihexagonal tiling
Triheptagonal tiling
Trioctagonal tiling
Bitruncation (2t)
Dual kis (dk)
2t{p,q}
truncated triangular dihedron
(Half of the "edges" count as degeneratedigon faces. The other half are normal edges.)
triangular prism
truncated tetrahedron
truncated octahedron
truncated cube
truncated icosahedron
truncated dodecahedron
truncated triangular tiling
truncated hexagonal tiling
Truncated order-7 triangular tiling
Truncated heptagonal tiling
Truncated order-8 triangular tiling
Truncated octagonal tiling
Birectification (2r)
Dual (d)
2r{p,q}
triangular dihedron
{3,2}
triangular hosohedron
{2,3}
tetrahedron
octahedron
cube
icosahedron
dodecahedron
triangular tiling
hexagonal tiling
Order-7 triangular tiling
Heptagonal tiling
Order-8 triangular tiling
Octagonal tiling
Cantellation (rr)
Expansion (e)
rr{p,q}
triangular prism
(The "edge" between each pair of tetragons counts as a degeneratedigon face. The other edges (the ones between a trigon and a tetragon) are normal edges.)
rhombitetratetrahedron
rhombicuboctahedron
rhombicosidodecahedron
rhombitrihexagonal tiling
Rhombitriheptagonal tiling
Rhombitrioctagonal tiling
Snub rectified (sr)
Snub (s)
sr{p,q}
triangular antiprism
(Three yellow-yellow "edges", no two of which share any vertices, count as degeneratedigon faces. The other edges are normal edges.)
snub tetratetrahedron
snub cuboctahedron
snub icosidodecahedron
snub trihexagonal tiling
Snub triheptagonal tiling
Snub trioctagonal tiling
Cantitruncation (tr)
Bevel (b)
tr{p,q}
hexagonal prism
truncated tetratetrahedron
truncated cuboctahedron
truncated icosidodecahedron
truncated trihexagonal tiling
Truncated triheptagonal tiling
Truncated trioctagonal tiling

Inhyperbolic geometry, auniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which hasregular polygons asfaces and isvertex-transitive (transitive on itsvertices, isogonal, i.e. there is anisometry mapping any vertex onto any other). It follows that all vertices arecongruent, and thetiling has a high degree of rotational and translationalsymmetry.

Uniform tilings can be identified by theirvertex configuration, a sequence of numbers representing the number of sides of the polygons around each vertex. For example, 7.7.7 represents theheptagonal tiling which has 3heptagons around each vertex. It is also regular since all the polygons are the same size, so it can also be given theSchläfli symbol {7,3}.

Uniform tilings may beregular (if also face- and edge-transitive), quasi-regular (if edge-transitive but not face-transitive) orsemi-regular (if neither edge- nor face-transitive). For right triangles (p q 2), there are two regular tilings, represented bySchläfli symbol {p,q} and {q,p}.

Wythoff construction

[edit]
Example Wythoff construction with right triangles (r = 2) and the 7 generator points. Lines to the active mirrors are colored red, yellow, and blue with the 3 nodes opposite them as associated by the Wythoff symbol.

There are an infinite number of uniform tilings based on theSchwarz triangles (p q r) where1/p +1/q +1/r < 1, wherep,q,r are each orders of reflection symmetry at three points of thefundamental domain triangle – the symmetry group is a hyperbolictriangle group.

Each symmetry family contains 7 uniform tilings, defined by aWythoff symbol orCoxeter-Dynkin diagram, 7 representing combinations of 3 active mirrors. An 8th represents analternation operation, deleting alternate vertices from the highest form with all mirrors active.

Families withr = 2 containregular hyperbolic tilings, defined by aCoxeter group such as [7,3], [8,3], [9,3], ... [5,4], [6,4], ....

Hyperbolic families withr = 3 or higher are given by (p q r) and include (4 3 3), (5 3 3), (6 3 3) ... (4 4 3), (5 4 3), ... (4 4 4)....

Hyperbolic triangles (p q r) define compact uniform hyperbolic tilings. In the limit any ofp,q orr can be replaced by ∞ which defines a paracompact hyperbolic triangle and creates uniform tilings with either infinite faces (calledapeirogons) that converge to a single ideal point, or infinite vertex figure with infinitely many edges diverging from the same ideal point.

More symmetry families can be constructed from fundamental domains that are not triangles.

Selected families of uniform tilings are shown below (using thePoincaré disk model for the hyperbolic plane). Three of them – (7 3 2), (5 4 2), and (4 3 3) – and no others, areminimal in the sense that if any of their defining numbers is replaced by a smaller integer the resulting pattern is either Euclidean or spherical rather than hyperbolic; conversely, any of the numbers can be increased (even to infinity) to generate other hyperbolic patterns.

Each uniform tiling generates adual uniform tiling, with many of them also given below.

Right triangle domains

[edit]

There are infinitely many (p q 2)triangle group families. This article shows the regular tiling up top,q = 8, and uniform tilings in 12 families: (7 3 2), (8 3 2), (5 4 2), (6 4 2), (7 4 2), (8 4 2), (5 5 2), (6 5 2) (6 6 2), (7 7 2), (8 6 2), and (8 8 2).

Regular hyperbolic tilings

[edit]
Wikimedia Commons has media related toRegular hyperbolic tilings.

The simplest set of hyperbolic tilings are regular tilings {p,q}, which exist in a matrix with the regular polyhedra and Euclidean tilings. The regular tiling {p,q} has a dual tiling {q,p} across the diagonal axis of the table. Self-dual tilings {2,2},{3,3},{4,4},{5,5}, etc. pass down the diagonal of the table.

Regular hyperbolic tiling table
Spherical(improper/Platonic)/Euclidean/hyperbolic (Poincaré disk:compact/paracompact/noncompact) tessellations with theirSchläfli symbol
p \ q2345678......iπ/λ
2
{2,2}

{2,3}

{2,4}

{2,5}

{2,6}

{2,7}

{2,8}

{2,∞}

{2,iπ/λ}
3

{3,2}

(tetrahedron)
{3,3}

(octahedron)
{3,4}

(icosahedron)
{3,5}

(deltille)
{3,6}


{3,7}


{3,8}


{3,∞}


{3,iπ/λ}
4

{4,2}

(cube)
{4,3}

(quadrille)
{4,4}


{4,5}


{4,6}


{4,7}


{4,8}


{4,∞}

{4,iπ/λ}
5

{5,2}

(dodecahedron)
{5,3}


{5,4}


{5,5}


{5,6}


{5,7}


{5,8}


{5,∞}

{5,iπ/λ}
6

{6,2}

(hextille)
{6,3}


{6,4}


{6,5}


{6,6}


{6,7}


{6,8}


{6,∞}

{6,iπ/λ}
7{7,2}

{7,3}

{7,4}

{7,5}

{7,6}

{7,7}

{7,8}

{7,∞}
{7,iπ/λ}
8{8,2}

{8,3}

{8,4}

{8,5}

{8,6}

{8,7}

{8,8}

{8,∞}
{8,iπ/λ}
...

{∞,2}

{∞,3}

{∞,4}

{∞,5}

{∞,6}

{∞,7}

{∞,8}

{∞,∞}

{∞,iπ/λ}
...
iπ/λ
{iπ/λ,2}

{iπ/λ,3}

{iπ/λ,4}

{iπ/λ,5}

{iπ/λ,6}
{iπ/λ,7}
{iπ/λ,8}

{iπ/λ,∞}

{iπ/λ, iπ/λ}

(7 3 2)

[edit]

The(7 3 2)triangle group,Coxeter group [7,3],orbifold (*732) contains these uniform tilings:

Uniform heptagonal/triangular tilings
Symmetry:[7,3], (*732)[7,3]+, (732)
{7,3}t{7,3}r{7,3}t{3,7}{3,7}rr{7,3}tr{7,3}sr{7,3}
Uniform duals
V73V3.14.14V3.7.3.7V6.6.7V37V3.4.7.4V4.6.14V3.3.3.3.7

(8 3 2)

[edit]

The(8 3 2)triangle group,Coxeter group [8,3],orbifold (*832) contains these uniform tilings:

Uniform octagonal/triangular tilings
Symmetry:[8,3], (*832)[8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3}t{8,3}r{8,3}t{3,8}{3,8}rr{8,3}
s2{3,8}
tr{8,3}sr{8,3}h{8,3}h2{8,3}s{3,8}




or

or





Uniform duals
V83V3.16.16V3.8.3.8V6.6.8V38V3.4.8.4V4.6.16V34.8V(3.4)3V8.6.6V35.4

(5 4 2)

[edit]

The(5 4 2)triangle group,Coxeter group [5,4],orbifold (*542) contains these uniform tilings:

Uniform pentagonal/square tilings
Symmetry:[5,4], (*542)[5,4]+, (542)[5+,4], (5*2)[5,4,1+], (*552)
{5,4}t{5,4}r{5,4}2t{5,4}=t{4,5}2r{5,4}={4,5}rr{5,4}tr{5,4}sr{5,4}s{5,4}h{4,5}
Uniform duals
V54V4.10.10V4.5.4.5V5.8.8V45V4.4.5.4V4.8.10V3.3.4.3.5V3.3.5.3.5V55

(6 4 2)

[edit]

The(6 4 2) triangle group,Coxeter group [6,4],orbifold (*642) contains these uniform tilings. Because all the elements are even, each uniform dual tiling one represents the fundamental domain of a reflective symmetry: *3333, *662, *3232, *443, *222222, *3222, and *642 respectively. As well, all 7 uniform tiling can be alternated, and those have duals as well.

Uniform tetrahexagonal tilings
Symmetry:[6,4], (*642)
(with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries)
(And [(∞,3,∞,3)] (*3232) index 4 subsymmetry)

=

=
=

=

=
=

=


=


=
=
=



=
{6,4}t{6,4}r{6,4}t{4,6}{4,6}rr{6,4}tr{6,4}
Uniform duals
V64V4.12.12V(4.6)2V6.8.8V46V4.4.4.6V4.8.12
Alternations
[1+,6,4]
(*443)
[6+,4]
(6*2)
[6,1+,4]
(*3222)
[6,4+]
(4*3)
[6,4,1+]
(*662)
[(6,4,2+)]
(2*32)
[6,4]+
(642)

=

=

=

=

=

=
h{6,4}s{6,4}hr{6,4}s{4,6}h{4,6}hrr{6,4}sr{6,4}

(7 4 2)

[edit]

The(7 4 2) triangle group,Coxeter group [7,4],orbifold (*742) contains these uniform tilings:

Uniform heptagonal/square tilings
Symmetry:[7,4], (*742)[7,4]+, (742)[7+,4], (7*2)[7,4,1+], (*772)
{7,4}t{7,4}r{7,4}2t{7,4}=t{4,7}2r{7,4}={4,7}rr{7,4}tr{7,4}sr{7,4}s{7,4}h{4,7}
Uniform duals
V74V4.14.14V4.7.4.7V7.8.8V47V4.4.7.4V4.8.14V3.3.4.3.7V3.3.7.3.7V77

(8 4 2)

[edit]

The(8 4 2) triangle group, Coxeter group [8,4],orbifold (*842) contains these uniform tilings. Because all the elements are even, each uniform dual tiling one represents the fundamental domain of a reflective symmetry: *4444, *882, *4242, *444, *22222222, *4222, and *842 respectively. As well, all 7 uniform tiling can be alternated, and those have duals as well.

Uniform octagonal/square tilings
[8,4], (*842)
(with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries)
(And [(∞,4,∞,4)] (*4242) index 4 subsymmetry)

=

=
=

=

=
=

=


=


=
=



=
{8,4}t{8,4}
r{8,4}2t{8,4}=t{4,8}2r{8,4}={4,8}rr{8,4}tr{8,4}
Uniform duals
V84V4.16.16V(4.8)2V8.8.8V48V4.4.4.8V4.8.16
Alternations
[1+,8,4]
(*444)
[8+,4]
(8*2)
[8,1+,4]
(*4222)
[8,4+]
(4*4)
[8,4,1+]
(*882)
[(8,4,2+)]
(2*42)
[8,4]+
(842)

=

=

=

=

=

=
h{8,4}s{8,4}hr{8,4}s{4,8}h{4,8}hrr{8,4}sr{8,4}
Alternation duals
V(4.4)4V3.(3.8)2V(4.4.4)2V(3.4)3V88V4.44V3.3.4.3.8

(5 5 2)

[edit]

The(5 5 2) triangle group,Coxeter group [5,5],orbifold (*552) contains these uniform tilings:

Uniform pentapentagonal tilings
Symmetry:[5,5], (*552)[5,5]+, (552)

=

=

=

=

=

=

=

=
Order-5 pentagonal tiling
{5,5}
Truncated order-5 pentagonal tiling
t{5,5}
Order-4 pentagonal tiling
r{5,5}
Truncated order-5 pentagonal tiling
2t{5,5} = t{5,5}
Order-5 pentagonal tiling
2r{5,5} = {5,5}
Tetrapentagonal tiling
rr{5,5}
Truncated order-4 pentagonal tiling
tr{5,5}
Snub pentapentagonal tiling
sr{5,5}
Uniform duals
Order-5 pentagonal tiling
V5.5.5.5.5
V5.10.10Order-5 square tiling
V5.5.5.5
V5.10.10Order-5 pentagonal tiling
V5.5.5.5.5
V4.5.4.5V4.10.10V3.3.5.3.5

(6 5 2)

[edit]

The(6 5 2) triangle group, Coxeter group [6,5],orbifold (*652) contains these uniform tilings:

Uniform hexagonal/pentagonal tilings
Symmetry:[6,5], (*652)[6,5]+, (652)[6,5+], (5*3)[1+,6,5], (*553)
{6,5}t{6,5}r{6,5}2t{6,5}=t{5,6}2r{6,5}={5,6}rr{6,5}tr{6,5}sr{6,5}s{5,6}h{6,5}
Uniform duals
V65V5.12.12V5.6.5.6V6.10.10V56V4.5.4.6V4.10.12V3.3.5.3.6V3.3.3.5.3.5V(3.5)5

(6 6 2)

[edit]

The(6 6 2)triangle group,Coxeter group [6,6],orbifold (*662) contains these uniform tilings:

Uniform hexahexagonal tilings
Symmetry:[6,6], (*662)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{6,6}
= h{4,6}
t{6,6}
= h2{4,6}
r{6,6}
{6,4}
t{6,6}
= h2{4,6}
{6,6}
= h{4,6}
rr{6,6}
r{6,4}
tr{6,6}
t{6,4}
Uniform duals
V66V6.12.12V6.6.6.6V6.12.12V66V4.6.4.6V4.12.12
Alternations
[1+,6,6]
(*663)
[6+,6]
(6*3)
[6,1+,6]
(*3232)
[6,6+]
(6*3)
[6,6,1+]
(*663)
[(6,6,2+)]
(2*33)
[6,6]+
(662)
= = =
h{6,6}s{6,6}hr{6,6}s{6,6}h{6,6}hrr{6,6}sr{6,6}

(8 6 2)

[edit]

The(8 6 2) triangle group, Coxeter group [8,6],orbifold (*862) contains these uniform tilings.

Uniform octagonal/hexagonal tilings
Symmetry:[8,6], (*862)
{8,6}t{8,6}
r{8,6}2t{8,6}=t{6,8}2r{8,6}={6,8}rr{8,6}tr{8,6}
Uniform duals
V86V6.16.16V(6.8)2V8.12.12V68V4.6.4.8V4.12.16
Alternations
[1+,8,6]
(*466)
[8+,6]
(8*3)
[8,1+,6]
(*4232)
[8,6+]
(6*4)
[8,6,1+]
(*883)
[(8,6,2+)]
(2*43)
[8,6]+
(862)
h{8,6}s{8,6}hr{8,6}s{6,8}h{6,8}hrr{8,6}sr{8,6}
Alternation duals
V(4.6)6V3.3.8.3.8.3V(3.4.4.4)2V3.4.3.4.3.6V(3.8)8V3.45V3.3.6.3.8

(7 7 2)

[edit]

The(7 7 2) triangle group, Coxeter group [7,7],orbifold (*772) contains these uniform tilings:

Uniform heptaheptagonal tilings
Symmetry:[7,7], (*772)[7,7]+, (772)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{7,7}t{7,7}
r{7,7}2t{7,7}=t{7,7}2r{7,7}={7,7}rr{7,7}tr{7,7}sr{7,7}
Uniform duals
V77V7.14.14V7.7.7.7V7.14.14V77V4.7.4.7V4.14.14V3.3.7.3.7

(8 8 2)

[edit]

The(8 8 2)triangle group,Coxeter group [8,8],orbifold (*882) contains these uniform tilings:

Uniform octaoctagonal tilings
Symmetry:[8,8], (*882)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{8,8}t{8,8}
r{8,8}2t{8,8}=t{8,8}2r{8,8}={8,8}rr{8,8}tr{8,8}
Uniform duals
V88V8.16.16V8.8.8.8V8.16.16V88V4.8.4.8V4.16.16
Alternations
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
= = = =
=
=
=
h{8,8}s{8,8}hr{8,8}s{8,8}h{8,8}hrr{8,8}sr{8,8}
Alternation duals
V(4.8)8V3.4.3.8.3.8V(4.4)4V3.4.3.8.3.8V(4.8)8V46V3.3.8.3.8

General triangle domains

[edit]

There are infinitely many generaltriangle group families (p q r). This article shows uniform tilings in 9 families: (4 3 3), (4 4 3), (4 4 4), (5 3 3), (5 4 3), (5 4 4), (6 3 3), (6 4 3), and (6 4 4).

(4 3 3)

[edit]

The(4 3 3)triangle group,Coxeter group [(4,3,3)],orbifold (*433) contains these uniform tilings. Without right angles in the fundamental triangle, theWythoff constructions are slightly different. For instance in the (4,3,3)triangle family, thesnub form has six polygons around a vertex and its dual has hexagons rather than pentagons. In general thevertex figure of a snub tiling in a triangle (p,q,r) is p. 3.q.3.r.3, being 4.3.3.3.3.3 in this case below.

Uniform (4,3,3) tilings
Symmetry: [(4,3,3)],(*433)[(4,3,3)]+, (433)
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
Uniform duals
V(3.4)3V3.8.3.8V(3.4)3V3.6.4.6V(3.3)4V3.6.4.6V6.6.8V3.3.3.3.3.4

(4 4 3)

[edit]

The(4 4 3)triangle group,Coxeter group [(4,4,3)],orbifold (*443) contains these uniform tilings.

Uniform (4,4,3) tilings
Symmetry:[(4,4,3)] (*443)[(4,4,3)]+
(443)
[(4,4,3+)]
(3*22)
[(4,1+,4,3)]
(*3232)
h{6,4}
t0(4,4,3)
h2{6,4}
t0,1(4,4,3)
{4,6}1/2
t1(4,4,3)
h2{6,4}
t1,2(4,4,3)
h{6,4}
t2(4,4,3)
r{6,4}1/2
t0,2(4,4,3)
t{4,6}1/2
t0,1,2(4,4,3)
s{4,6}1/2
s(4,4,3)
hr{4,6}1/2
hr(4,3,4)
h{4,6}1/2
h(4,3,4)
q{4,6}
h1(4,3,4)
Uniform duals
V(3.4)4V3.8.4.8V(4.4)3V3.8.4.8V(3.4)4V4.6.4.6V6.8.8V3.3.3.4.3.4V(4.4.3)2V66V4.3.4.6.6

(4 4 4)

[edit]

The(4 4 4)triangle group,Coxeter group [(4,4,4)],orbifold (*444) contains these uniform tilings.

Uniform (4,4,4) tilings
Symmetry:[(4,4,4)], (*444)[(4,4,4)]+
(444)
[(1+,4,4,4)]
(*4242)
[(4+,4,4)]
(4*22)










t0(4,4,4)
h{8,4}
t0,1(4,4,4)
h2{8,4}
t1(4,4,4)
{4,8}1/2
t1,2(4,4,4)
h2{8,4}
t2(4,4,4)
h{8,4}
t0,2(4,4,4)
r{4,8}1/2
t0,1,2(4,4,4)
t{4,8}1/2
s(4,4,4)
s{4,8}1/2
h(4,4,4)
h{4,8}1/2
hr(4,4,4)
hr{4,8}1/2
Uniform duals
V(4.4)4V4.8.4.8V(4.4)4V4.8.4.8V(4.4)4V4.8.4.8V8.8.8V3.4.3.4.3.4V88V(4,4)3

(5 3 3)

[edit]

The(5 3 3)triangle group,Coxeter group [(5,3,3)],orbifold (*533) contains these uniform tilings.

Uniform (5,3,3) tilings
Symmetry: [(5,3,3)], (*533)[(5,3,3)]+, (533)
h{10,3}
t0(5,3,3)
r{3,10}1/2
t0,1(5,3,3)
h{10,3}
t1(5,3,3)
h2{10,3}
t1,2(5,3,3)
{3,10}1/2
t2(5,3,3)
h2{10,3}
t0,2(5,3,3)
t{3,10}1/2
t0,1,2(5,3,3)
s{3,10}1/2
ht0,1,2(5,3,3)
Uniform duals
V(3.5)3V3.10.3.10V(3.5)3V3.6.5.6V(3.3)5V3.6.5.6V6.6.10V3.3.3.3.3.5

(5 4 3)

[edit]

The(5 4 3)triangle group,Coxeter group [(5,4,3)],orbifold (*543) contains these uniform tilings.

(5,4,3) uniform tilings
Symmetry: [(5,4,3)], (*543)[(5,4,3)]+, (543)
t0(5,4,3)
(5,4,3)
t0,1(5,4,3)
r(3,5,4)
t1(5,4,3)
(4,3,5)
t1,2(5,4,3)
r(5,4,3)
t2(5,4,3)
(3,5,4)
t0,2(5,4,3)
r(4,3,5)
t0,1,2(5,4,3)
t(5,4,3)
s(5,4,3)
Uniform duals
V(3.5)4V3.10.4.10V(4.5)3V3.8.5.8V(3.4)5V4.6.5.6V6.8.10V3.5.3.4.3.3

(5 4 4)

[edit]

The(5 4 4)triangle group,Coxeter group [(5,4,4)],orbifold (*544) contains these uniform tilings.

Uniform (5,4,4) tilings
Symmetry: [(5,4,4)]
(*544)
[(5,4,4)]+
(544)
[(5+,4,4)]
(5*22)
[(5,4,1+,4)]
(*5222)
t0(5,4,4)
h{10,4}
t0,1(5,4,4)
r{4,10}1/2
t1(5,4,4)
h{10,4}
t1,2(5,4,4)
h2{10,4}
t2(5,4,4)
{4,10}1/2
t0,2(5,4,4)
h2{10,4}
t0,1,2(5,4,4)
t{4,10}1/2
s(4,5,4)
s{4,10}1/2
h(4,5,4)
h{4,10}1/2
hr(4,5,4)
hr{4,10}1/2
Uniform duals
V(4.5)4V4.10.4.10V(4.5)4V4.8.5.8V(4.4)5V4.8.5.8V8.8.10V3.4.3.4.3.5V1010V(4.4.5)2

(6 3 3)

[edit]

The(6 3 3)triangle group,Coxeter group [(6,3,3)],orbifold (*633) contains these uniform tilings.

Uniform (6,3,3) tilings
Symmetry: [(6,3,3)], (*633)[(6,3,3)]+, (633)
t0{(6,3,3)}
h{12,3}
t0,1{(6,3,3)}
r{3,12}1/2
t1{(6,3,3)}
h{12,3}
t1,2{(6,3,3)}
h2{12,3}
t2{(6,3,3)}
{3,12}1/2
t0,2{(6,3,3)}
h2{12,3}
t0,1,2{(6,3,3)}
t{3,12}1/2
s{(6,3,3)}
s{3,12}1/2
Uniform duals
V(3.6)3V3.12.3.12V(3.6)3V3.6.6.6V(3.3)6
{12,3}
V3.6.6.6V6.6.12V3.3.3.3.3.6

(6 4 3)

[edit]

The(6 4 3)triangle group,Coxeter group [(6,4,3)],orbifold (*643) contains these uniform tilings.

(6,4,3) uniform tilings
Symmetry: [(6,4,3)]
(*643)
[(6,4,3)]+
(643)
[(6,1+,4,3)]
(*3332)
[(6,4,3+)]
(3*32)
=
t0{(6,4,3)}t0,1{(6,4,3)}t1{(6,4,3)}t1,2{(6,4,3)}t2{(6,4,3)}t0,2{(6,4,3)}t0,1,2{(6,4,3)}s{(6,4,3)}h{(6,4,3)}hr{(6,4,3)}
Uniform duals
V(3.6)4V3.12.4.12V(4.6)3V3.8.6.8V(3.4)6V4.6.6.6V6.8.12V3.6.3.4.3.3V(3.6.6)3V4.(3.4)3

(6 4 4)

[edit]

The(6 4 4)triangle group,Coxeter group [(6,4,4)],orbifold (*644) contains these uniform tilings.

6-4-4 uniform tilings
Symmetry: [(6,4,4)], (*644)(644)








(6,4,4)
h{12,4}
t0,1(6,4,4)
r{4,12}1/2
t1(6,4,4)
h{12,4}
t1,2(6,4,4)
h2{12,4}
t2(6,4,4)
{4,12}1/2
t0,2(6,4,4)
h2{12,4}
t0,1,2(6,4,4)
t{4,12}1/2
s(6,4,4)
s{4,12}1/2
Uniform duals
V(4.6)4V(4.12)2V(4.6)4V4.8.6.8V412V4.8.6.8V8.8.12V4.6.4.6.6.6

Summary of tilings with finite triangular fundamental domains

[edit]
Reference:Template:Finite triangular hyperbolic tilings table

Quadrilateral domains

[edit]
A quadrilateral domain has 9 generator point positions that define uniform tilings. Vertex figures are listed for general orbifold symmetry *pqrs, with 2-gonal faces degenerating into edges.

(3 2 2 2)

[edit]
Example uniform tilings of *3222 symmetry

Quadrilateral fundamental domains also exist in the hyperbolic plane, with the*3222orbifold ([∞,3,∞] Coxeter notation) as the smallest family. There are 9 generation locations for uniform tiling within quadrilateral domains. The vertex figure can be extracted from a fundamental domain as 3 cases (1) Corner (2) Mid-edge, and (3) Center. When generating points are corners adjacent to order-2 corners, degenerate {2}digon faces at those corners exist but can be ignored.Snub andalternated uniform tilings can also be generated (not shown) if a vertex figure contains only even-sided faces.

Coxeter diagrams of quadrilateral domains are treated as a degeneratetetrahedron graph with 2 of 6 edges labeled as infinity, or as dotted lines. A logical requirement of at least one of two parallel mirrors being active limits the uniform cases to 9, and other ringed patterns are not valid.

Uniform tilings in symmetry *3222
64
6.6.4.4
(3.4.4)2
4.3.4.3.3.3
6.6.4.4
6.4.4.4
3.4.4.4.4
(3.4.4)2
3.4.4.4.4
46

(3 2 3 2)

[edit]
Similar H2 tilings in *3232 symmetry
Coxeter
diagrams
Vertex
figure
66(3.4.3.4)23.4.6.6.46.4.6.4
Image
Dual

Ideal triangle domains

[edit]

There are infinitely manytriangle group families including infinite orders. This article shows uniform tilings in 9 families: (∞ 3 2), (∞ 4 2), (∞ ∞ 2), (∞ 3 3), (∞ 4 3), (∞ 4 4), (∞ ∞ 3), (∞ ∞ 4), and (∞ ∞ ∞).

(∞ 3 2)

[edit]

The ideal(∞ 3 2)triangle group,Coxeter group [∞,3],orbifold (*∞32) contains these uniform tilings:

Paracompact uniform tilings in [∞,3] family
Symmetry:[∞,3], (*∞32)[∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)

=

=

=
=
or
=
or

=
{∞,3}t{∞,3}r{∞,3}t{3,∞}{3,∞}rr{∞,3}tr{∞,3}sr{∞,3}h{∞,3}h2{∞,3}s{3,∞}
Uniform duals
V∞3V3.∞.∞V(3.∞)2V6.6.∞V3V4.3.4.∞V4.6.∞V3.3.3.3.∞V(3.∞)3V3.3.3.3.3.∞

(∞ 4 2)

[edit]

The ideal(∞ 4 2)triangle group,Coxeter group [∞,4],orbifold (*∞42) contains these uniform tilings:

Paracompact uniform tilings in [∞,4] family
{∞,4}t{∞,4}r{∞,4}2t{∞,4}=t{4,∞}2r{∞,4}={4,∞}rr{∞,4}tr{∞,4}
Dual figures
V∞4V4.∞.∞V(4.∞)2V8.8.∞V4V43.∞V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)

=

=
h{∞,4}s{∞,4}hr{∞,4}s{4,∞}h{4,∞}hrr{∞,4}s{∞,4}
Alternation duals
V(∞.4)4V3.(3.∞)2V(4.∞.4)2V3.∞.(3.4)2V∞V∞.44V3.3.4.3.∞

(∞ 5 2)

[edit]

The ideal(∞ 5 2)triangle group,Coxeter group [∞,5],orbifold (*∞52) contains these uniform tilings:

Paracompact uniform apeirogonal/pentagonal tilings
Symmetry: [∞,5], (*∞52)[∞,5]+
(∞52)
[1+,∞,5]
(*∞55)
[∞,5+]
(5*∞)
{∞,5}t{∞,5}r{∞,5}2t{∞,5}=t{5,∞}2r{∞,5}={5,∞}rr{∞,5}tr{∞,5}sr{∞,5}h{∞,5}h2{∞,5}s{5,∞}
Uniform duals
V∞5V5.∞.∞V5.∞.5.∞V∞.10.10V5V4.5.4.∞V4.10.∞V3.3.5.3.∞V(∞.5)5V3.5.3.5.3.∞

(∞ ∞ 2)

[edit]

The ideal(∞ ∞ 2)triangle group,Coxeter group [∞,∞],orbifold (*∞∞2) contains these uniform tilings:

Paracompact uniform tilings in [∞,∞] family

=
=

=
=

=
=

=
=

=
=

=

=
{∞,∞}t{∞,∞}r{∞,∞}2t{∞,∞}=t{∞,∞}2r{∞,∞}={∞,∞}rr{∞,∞}tr{∞,∞}
Dual tilings
V∞V∞.∞.∞V(∞.∞)2V∞.∞.∞V∞V4.∞.4.∞V4.4.∞
Alternations
[1+,∞,∞]
(*∞∞2)
[∞+,∞]
(∞*∞)
[∞,1+,∞]
(*∞∞∞∞)
[∞,∞+]
(∞*∞)
[∞,∞,1+]
(*∞∞2)
[(∞,∞,2+)]
(2*∞∞)
[∞,∞]+
(2∞∞)
h{∞,∞}s{∞,∞}hr{∞,∞}s{∞,∞}h2{∞,∞}hrr{∞,∞}sr{∞,∞}
Alternation duals
V(∞.∞)V(3.∞)3V(∞.4)4V(3.∞)3V∞V(4.∞.4)2V3.3.∞.3.∞

(∞ 3 3)

[edit]

The ideal(∞ 3 3)triangle group,Coxeter group [(∞,3,3)],orbifold (*∞33) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(∞,3,3)] family
Symmetry: [(∞,3,3)], (*∞33)[(∞,3,3)]+, (∞33)
(∞,∞,3)t0,1(∞,3,3)t1(∞,3,3)t1,2(∞,3,3)t2(∞,3,3)t0,2(∞,3,3)t0,1,2(∞,3,3)s(∞,3,3)
Dual tilings
V(3.∞)3V3.∞.3.∞V(3.∞)3V3.6.∞.6V(3.3)V3.6.∞.6V6.6.∞V3.3.3.3.3.∞

(∞ 4 3)

[edit]

The ideal(∞ 4 3)triangle group,Coxeter group [(∞,4,3)],orbifold (*∞43) contains these uniform tilings:

Paracompact hyperbolic uniform tilings in [(∞,4,3)] family
Symmetry: [(∞,4,3)]
(*∞43)
[(∞,4,3)]+
(∞43)
[(∞,4,3+)]
(3*4∞)
[(∞,1+,4,3)]
(*∞323)
=
(∞,4,3)t0,1(∞,4,3)t1(∞,4,3)t1,2(∞,4,3)t2(∞,4,3)t0,2(∞,4,3)t0,1,2(∞,4,3)s(∞,4,3)ht0,2(∞,4,3)ht1(∞,4,3)
Dual tilings
V(3.∞)4V3.∞.4.∞V(4.∞)3V3.8.∞.8V(3.4)4.6.∞.6V6.8.∞V3.3.3.4.3.∞V(4.3.4)2.∞V(6.∞.6)3

(∞ 4 4)

[edit]

The ideal(∞ 4 4)triangle group,Coxeter group [(∞,4,4)],orbifold (*∞44) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(4,4,∞)] family
Symmetry: [(4,4,∞)], (*44∞)(44∞)








(4,4,∞)
h{∞,4}
t0,1(4,4,∞)
r{4,∞}1/2
t1(4,4,∞)
h{4,∞}1/2
t1,2(4,4,∞)
h2{∞,4}
t2(4,4,∞)
{4,∞}1/2
t0,2(4,4,∞)
h2{∞,4}
t0,1,2(4,4,∞)
t{4,∞}1/2
s(4,4,∞)
s{4,∞}1/2
Dual tilings
V(4.∞)4V4.∞.4.∞V(4.∞)4V4.8.∞.8;V4V4.8.∞.8;V8.8.∞V3.4.3.4.3.∞

(∞ ∞ 3)

[edit]

The ideal(∞ ∞ 3)triangle group,Coxeter group [(∞,∞,3)],orbifold (*∞∞3) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(∞,∞,3)] family
Symmetry: [(∞,∞,3)], (*∞∞3)[(∞,∞,3)]+
(∞∞3)
[(∞,∞,3+)]
(3*∞∞)
[(∞,1+,∞,3)]
(*∞3∞3)
=
(∞,∞,3)
h{6,∞}
t0,1(∞,∞,3)
h2{6,∞}
t1(∞,∞,3)
{∞,6}1/2
t1,2(∞,∞,3)
h2{6,∞}
t2(∞,∞,3)
h{6,∞}
t0,2(∞,∞,3)
r{∞,6}1/2
t0,1,2(∞,∞,3)
t{∞,6}1/2
s(∞,∞,3)
s{∞,6}1/2
hr0,2(∞,∞,3)
hr{∞,6}1/2
hr1(∞,∞,3)
h{∞,6}1/2
Dual tilings
V(3.∞)V3.∞.∞.∞V(∞.∞)3V3.∞.∞.∞V(3.∞)V(6.∞)2V6.∞.∞V3.∞.3.∞.3.3V(3.4.∞.4)2V(∞.6)6

(∞ ∞ 4)

[edit]

The ideal(∞ ∞ 4)triangle group,Coxeter group [(∞,∞,4)],orbifold (*∞∞4) contains these uniform tilings.

Paracompact hyperbolic uniform tilings in [(∞,∞,4)] family
Symmetry: [(∞,∞,4)], (*∞∞4)
(∞,∞,4)
h{8,∞}
t0,1(∞,∞,4)
h2{8,∞}
t1(∞,∞,4)
{∞,8}
t1,2(∞,∞,4)
h2{∞,8}
t2(∞,∞,4)
h{8,∞}
t0,2(∞,∞,4)
r{∞,8}
t0,1,2(∞,∞,4)
t{∞,8}
Dual tilings
V(4.∞)V∞.∞.∞.4V∞4V∞.∞.∞.4V(4.∞)V∞.∞.∞.4V∞.∞.8
Alternations
[(1+,∞,∞,4)]
(*2∞∞∞)
[(∞+,∞,4)]
(∞*2∞)
[(∞,1+,∞,4)]
(*2∞∞∞)
[(∞,∞+,4)]
(∞*2∞)
[(∞,∞,1+,4)]
(*2∞∞∞)
[(∞,∞,4+)]
(2*∞∞)
[(∞,∞,4)]+
(4∞∞)
Alternation duals
V∞V∞.44V(∞.4)4V∞.44V∞V∞.44V3.∞.3.∞.3.4

(∞ ∞ ∞)

[edit]

The ideal(∞ ∞ ∞)triangle group,Coxeter group [(∞,∞,∞)],orbifold (*∞∞∞) contains these uniform tilings.

Paracompact uniform tilings in [(∞,∞,∞)] family
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
h2{∞,∞}
(∞,∞,∞)
h{∞,∞}
r(∞,∞,∞)
r{∞,∞}
t(∞,∞,∞)
t{∞,∞}
Dual tilings
V∞V∞.∞.∞.∞V∞V∞.∞.∞.∞V∞V∞.∞.∞.∞V∞.∞.∞
Alternations
[(1+,∞,∞,∞)]
(*∞∞∞∞)
[∞+,∞,∞)]
(∞*∞)
[∞,1+,∞,∞)]
(*∞∞∞∞)
[∞,∞+,∞)]
(∞*∞)
[(∞,∞,∞,1+)]
(*∞∞∞∞)
[(∞,∞,∞+)]
(∞*∞)
[∞,∞,∞)]+
(∞∞∞)
Alternation duals
V(∞.∞)V(∞.4)4V(∞.∞)V(∞.4)4V(∞.∞)V(∞.4)4V3.∞.3.∞.3.∞

Summary of tilings with infinite triangular fundamental domains

[edit]

For a table of all uniform hyperbolic tilings with fundamental domains (p q r), where 2 ≤p,q,r ≤ 8, and one or more as ∞.

Infinite triangular hyperbolic tilings
(p q r)t0h0t01h01t1h1t12h12t2h2t02h02t012s

(∞ 3 2)
t0{∞,3}

3
h0{∞,3}
(3.∞)3
t01{∞,3}

∞.3.∞
t1{∞,3}

(3.∞)2
t12{∞,3}

6.∞.6
h12{∞,3}
3.3.3.∞.3.3
t2{∞,3}

3
t02{∞,3}

3.4.∞.4
t012{∞,3}

4.6.∞
s{∞,3}
3.3.3.3.∞

(∞ 4 2)
t0{∞,4}

4
h0{∞,4}
(4.∞)4
t01{∞,4}

∞.4.∞
h01{∞,4}
3.∞.3.3.∞
t1{∞,4}

(4.∞)2
h1{∞,4}
(4.4.∞)2
t12{∞,4}

8.∞.8
h12{∞,4}
3.4.3.∞.3.4
t2{∞,4}

4
h2{∞,4}
t02{∞,4}

4.4.∞.4
h02{∞,4}
4.4.4.∞.4
t012{∞,4}

4.8.∞
s{∞,4}
3.3.4.3.∞

(∞ 5 2)
t0{∞,5}

5
h0{∞,5}
(5.∞)5
t01{∞,5}

∞.5.∞
t1{∞,5}

(5.∞)2
t12{∞,5}

10.∞.10
h12{∞,5}
3.5.3.∞.3.5
t2{∞,5}

5
t02{∞,5}

5.4.∞.4
t012{∞,5}

4.10.∞
s{∞,5}
3.3.5.3.∞

(∞ 6 2)
t0{∞,6}

6
h0{∞,6}
(6.∞)6
t01{∞,6}

∞.6.∞
h01{∞,6}
3.∞.3.3.3.∞
t1{∞,6}

(6.∞)2
h1{∞,6}
(4.3.4.∞)2
t12{∞,6}

12.∞.12
h12{∞,6}
3.6.3.∞.3.6
t2{∞,6}

6
h2{∞,6}
(∞.3)
t02{∞,6}

6.4.∞.4
h02{∞,6}
4.3.4.4.∞.4
t012{∞,6}

4.12.∞
s{∞,6}
3.3.6.3.∞

(∞ 7 2)
t0{∞,7}

7
h0{∞,7}
(7.∞)7
t01{∞,7}

∞.7.∞
t1{∞,7}

(7.∞)2
t12{∞,7}

14.∞.14
h12{∞,7}
3.7.3.∞.3.7
t2{∞,7}

7
t02{∞,7}

7.4.∞.4
t012{∞,7}

4.14.∞
s{∞,7}
3.3.7.3.∞

(∞ 8 2)
t0{∞,8}

8
h0{∞,8}
(8.∞)8
t01{∞,8}

∞.8.∞
h01{∞,8}
3.∞.3.4.3.∞
t1{∞,8}

(8.∞)2
h1{∞,8}
(4.4.4.∞)2
t12{∞,8}

16.∞.16
h12{∞,8}
3.8.3.∞.3.8
t2{∞,8}

8
h2{∞,8}
(∞.4)
t02{∞,8}

8.4.∞.4
h02{∞,8}
4.4.4.4.∞.4
t012{∞,8}

4.16.∞
s{∞,8}
3.3.8.3.∞

(∞ ∞ 2)
t0{∞,∞}

h0{∞,∞}
(∞.∞)
t01{∞,∞}

∞.∞.∞
h01{∞,∞}
3.∞.3.∞.3.∞
t1{∞,∞}

4
h1{∞,∞}
(4.∞)4
t12{∞,∞}

∞.∞.∞
h12{∞,∞}
3.∞.3.∞.3.∞
t2{∞,∞}

h2{∞,∞}
(∞.∞)
t02{∞,∞}

(∞.4)2
h02{∞,∞}
(4.∞.4)2
t012{∞,∞}

4.∞.∞
s{∞,∞}
3.3.∞.3.∞

(∞ 3 3)
t0(∞,3,3)

(∞.3)3
t01(∞,3,3)

(3.∞)2
t1(∞,3,3)

(3.∞)3
t12(∞,3,3)

3.6.∞.6
t2(∞,3,3)

3
t02(∞,3,3)

3.6.∞.6
t012(∞,3,3)

6.6.∞
s(∞,3,3)
3.3.3.3.3.∞

(∞ 4 3)
t0(∞,4,3)

(∞.3)4
t01(∞,4,3)

3.∞.4.∞
t1(∞,4,3)

(4.∞)3
h1(∞,4,3)
(6.6.∞)3
t12(∞,4,3)

3.8.∞.8
t2(∞,4,3)

(4.3)
t02(∞,4,3)

4.6.∞.6
h02(∞,4,3)
4.4.3.4.∞.4.3
t012(∞,4,3)

6.8.∞
s(∞,4,3)
3.3.3.4.3.∞

(∞ 5 3)
t0(∞,5,3)

(∞.3)5
t01(∞,5,3)

3.∞.5.∞
t1(∞,5,3)

(5.∞)3
t12(∞,5,3)

3.10.∞.10
t2(∞,5,3)

(5.3)
t02(∞,5,3)

5.6.∞.6
t012(∞,5,3)

6.10.∞
s(∞,5,3)
3.3.3.5.3.∞

(∞ 6 3)
t0(∞,6,3)

(∞.3)6
t01(∞,6,3)

3.∞.6.∞
t1(∞,6,3)

(6.∞)3
h1(∞,6,3)
(6.3.6.∞)3
t12(∞,6,3)

3.12.∞.12
t2(∞,6,3)

(6.3)
t02(∞,6,3)

6.6.∞.6
h02(∞,6,3)
4.3.4.3.4.∞.4.3
t012(∞,6,3)

6.12.∞
s(∞,6,3)
3.3.3.6.3.∞

(∞ 7 3)
t0(∞,7,3)

(∞.3)7
t01(∞,7,3)

3.∞.7.∞
t1(∞,7,3)

(7.∞)3
t12(∞,7,3)

3.14.∞.14
t2(∞,7,3)

(7.3)
t02(∞,7,3)

7.6.∞.6
t012(∞,7,3)

6.14.∞
s(∞,7,3)
3.3.3.7.3.∞

(∞ 8 3)
t0(∞,8,3)

(∞.3)8
t01(∞,8,3)

3.∞.8.∞
t1(∞,8,3)

(8.∞)3
h1(∞,8,3)
(6.4.6.∞)3
t12(∞,8,3)

3.16.∞.16
t2(∞,8,3)

(8.3)
t02(∞,8,3)

8.6.∞.6
h02(∞,8,3)
4.4.4.3.4.∞.4.3
t012(∞,8,3)

6.16.∞
s(∞,8,3)
3.3.3.8.3.∞

(∞ ∞ 3)
t0(∞,∞,3)

(∞.3)
t01(∞,∞,3)

3.∞.∞.∞
t1(∞,∞,3)

6
h1(∞,∞,3)
(6.∞)6
t12(∞,∞,3)

3.∞.∞.∞
t2(∞,∞,3)

(∞.3)
t02(∞,∞,3)

(∞.6)2
h02(∞,∞,3)
(4.∞.4.3)2
t012(∞,∞,3)

6.∞.∞
s(∞,∞,3)
3.3.3.∞.3.∞

(∞ 4 4)
t0(∞,4,4)

(∞.4)4
h0(∞,4,4)
(8.∞.8)4
t01(∞,4,4)

(4.∞)2
h01(∞,4,4)
(4.4.∞)2
t1(∞,4,4)

(4.∞)4
h1(∞,4,4)
(8.8.∞)4
t12(∞,4,4)

4.8.∞.8
h12(∞,4,4)
4.4.4.4.∞.4.4
t2(∞,4,4)

4
h2(∞,4,4)
t02(∞,4,4)

4.8.∞.8
h02(∞,4,4)
4.4.4.4.∞.4.4
t012(∞,4,4)

8.8.∞
s(∞,4,4)
3.4.3.4.3.∞

(∞ 5 4)
t0(∞,5,4)

(∞.4)5
h0(∞,5,4)
(10.∞.10)5
t01(∞,5,4)

4.∞.5.∞
t1(∞,5,4)

(5.∞)4
t12(∞,5,4)

4.10.∞.10
h12(∞,5,4)
4.4.5.4.∞.4.5
t2(∞,5,4)

(5.4)
t02(∞,5,4)

5.8.∞.8
t012(∞,5,4)

8.10.∞
s(∞,5,4)
3.4.3.5.3.∞

(∞ 6 4)
t0(∞,6,4)

(∞.4)6
h0(∞,6,4)
(12.∞.12)6
t01(∞,6,4)

4.∞.6.∞
h01(∞,6,4)
4.4.∞.4.3.4.∞
t1(∞,6,4)

(6.∞)4
h1(∞,6,4)
(8.3.8.∞)4
t12(∞,6,4)

4.12.∞.12
h12(∞,6,4)
4.4.6.4.∞.4.6
t2(∞,6,4)

(6.4)
h2(∞,6,4)
(∞.3.∞)
t02(∞,6,4)

6.8.∞.8
h02(∞,6,4)
4.3.4.4.4.∞.4.4
t012(∞,6,4)

8.12.∞
s(∞,6,4)
3.4.3.6.3.∞

(∞ 7 4)
t0(∞,7,4)

(∞.4)7
h0(∞,7,4)
(14.∞.14)7
t01(∞,7,4)

4.∞.7.∞
t1(∞,7,4)

(7.∞)4
t12(∞,7,4)

4.14.∞.14
h12(∞,7,4)
4.4.7.4.∞.4.7
t2(∞,7,4)

(7.4)
t02(∞,7,4)

7.8.∞.8
t012(∞,7,4)

8.14.∞
s(∞,7,4)
3.4.3.7.3.∞

(∞ 8 4)
t0(∞,8,4)

(∞.4)8
h0(∞,8,4)
(16.∞.16)8
t01(∞,8,4)

4.∞.8.∞
h01(∞,8,4)
4.4.∞.4.4.4.∞
t1(∞,8,4)

(8.∞)4
h1(∞,8,4)
(8.4.8.∞)4
t12(∞,8,4)

4.16.∞.16
h12(∞,8,4)
4.4.8.4.∞.4.8
t2(∞,8,4)

(8.4)
h2(∞,8,4)
(∞.4.∞)
t02(∞,8,4)

8.8.∞.8
h02(∞,8,4)
4.4.4.4.4.∞.4.4
t012(∞,8,4)

8.16.∞
s(∞,8,4)
3.4.3.8.3.∞

(∞ ∞ 4)
t0(∞,∞,4)

(∞.4)
h0(∞,∞,4)
(∞.∞.∞)
t01(∞,∞,4)

4.∞.∞.∞
h01(∞,∞,4)
4.4.∞.4.∞.4.∞
t1(∞,∞,4)

8
h1(∞,∞,4)
(8.∞)8
t12(∞,∞,4)

4.∞.∞.∞
h12(∞,∞,4)
4.4.∞.4.∞.4.∞
t2(∞,∞,4)

(∞.4)
h2(∞,∞,4)
(∞.∞.∞)
t02(∞,∞,4)

(∞.8)2
h02(∞,∞,4)
(4.∞.4.4)2
t012(∞,∞,4)

8.∞.∞
s(∞,∞,4)
3.4.3.∞.3.∞

(∞ 5 5)
t0(∞,5,5)

(∞.5)5
t01(∞,5,5)

(5.∞)2
t1(∞,5,5)

(5.∞)5
t12(∞,5,5)

5.10.∞.10
t2(∞,5,5)

5
t02(∞,5,5)

5.10.∞.10
t012(∞,5,5)

10.10.∞
s(∞,5,5)
3.5.3.5.3.∞

(∞ 6 5)
t0(∞,6,5)

(∞.5)6
t01(∞,6,5)

5.∞.6.∞
t1(∞,6,5)

(6.∞)5
h1(∞,6,5)
(10.3.10.∞)5
t12(∞,6,5)

5.12.∞.12
t2(∞,6,5)

(6.5)
t02(∞,6,5)

6.10.∞.10
h02(∞,6,5)
4.3.4.5.4.∞.4.5
t012(∞,6,5)

10.12.∞
s(∞,6,5)
3.5.3.6.3.∞

(∞ 7 5)
t0(∞,7,5)

(∞.5)7
t01(∞,7,5)

5.∞.7.∞
t1(∞,7,5)

(7.∞)5
t12(∞,7,5)

5.14.∞.14
t2(∞,7,5)

(7.5)
t02(∞,7,5)

7.10.∞.10
t012(∞,7,5)

10.14.∞
s(∞,7,5)
3.5.3.7.3.∞

(∞ 8 5)
t0(∞,8,5)

(∞.5)8
t01(∞,8,5)

5.∞.8.∞
t1(∞,8,5)

(8.∞)5
h1(∞,8,5)
(10.4.10.∞)5
t12(∞,8,5)

5.16.∞.16
t2(∞,8,5)

(8.5)
t02(∞,8,5)

8.10.∞.10
h02(∞,8,5)
4.4.4.5.4.∞.4.5
t012(∞,8,5)

10.16.∞
s(∞,8,5)
3.5.3.8.3.∞

(∞ ∞ 5)
t0(∞,∞,5)

(∞.5)
t01(∞,∞,5)

5.∞.∞.∞
t1(∞,∞,5)

10
h1(∞,∞,5)
(10.∞)10
t12(∞,∞,5)

5.∞.∞.∞
t2(∞,∞,5)

(∞.5)
t02(∞,∞,5)

(∞.10)2
h02(∞,∞,5)
(4.∞.4.5)2
t012(∞,∞,5)

10.∞.∞
s(∞,∞,5)
3.5.3.∞.3.∞

(∞ 6 6)
t0(∞,6,6)

(∞.6)6
h0(∞,6,6)
(12.∞.12.3)6
t01(∞,6,6)

(6.∞)2
h01(∞,6,6)
(4.3.4.∞)2
t1(∞,6,6)

(6.∞)6
h1(∞,6,6)
(12.3.12.∞)6
t12(∞,6,6)

6.12.∞.12
h12(∞,6,6)
4.3.4.6.4.∞.4.6
t2(∞,6,6)

6
h2(∞,6,6)
(∞.3)
t02(∞,6,6)

6.12.∞.12
h02(∞,6,6)
4.3.4.6.4.∞.4.6
t012(∞,6,6)

12.12.∞
s(∞,6,6)
3.6.3.6.3.∞

(∞ 7 6)
t0(∞,7,6)

(∞.6)7
h0(∞,7,6)
(14.∞.14.3)7
t01(∞,7,6)

6.∞.7.∞
t1(∞,7,6)

(7.∞)6
t12(∞,7,6)

6.14.∞.14
h12(∞,7,6)
4.3.4.7.4.∞.4.7
t2(∞,7,6)

(7.6)
t02(∞,7,6)

7.12.∞.12
t012(∞,7,6)

12.14.∞
s(∞,7,6)
3.6.3.7.3.∞

(∞ 8 6)
t0(∞,8,6)

(∞.6)8
h0(∞,8,6)
(16.∞.16.3)8
t01(∞,8,6)

6.∞.8.∞
h01(∞,8,6)
4.3.4.∞.4.4.4.∞
t1(∞,8,6)

(8.∞)6
h1(∞,8,6)
(12.4.12.∞)6
t12(∞,8,6)

6.16.∞.16
h12(∞,8,6)
4.3.4.8.4.∞.4.8
t2(∞,8,6)

(8.6)
h2(∞,8,6)
(∞.4.∞.3)
t02(∞,8,6)

8.12.∞.12
h02(∞,8,6)
4.4.4.6.4.∞.4.6
t012(∞,8,6)

12.16.∞
s(∞,8,6)
3.6.3.8.3.∞

(∞ ∞ 6)
t0(∞,∞,6)

(∞.6)
h0(∞,∞,6)
(∞.∞.∞.3)
t01(∞,∞,6)

6.∞.∞.∞
h01(∞,∞,6)
4.3.4.∞.4.∞.4.∞
t1(∞,∞,6)

12
h1(∞,∞,6)
(12.∞)12
t12(∞,∞,6)

6.∞.∞.∞
h12(∞,∞,6)
4.3.4.∞.4.∞.4.∞
t2(∞,∞,6)

(∞.6)
h2(∞,∞,6)
(∞.∞.∞.3)
t02(∞,∞,6)

(∞.12)2
h02(∞,∞,6)
(4.∞.4.6)2
t012(∞,∞,6)

12.∞.∞
s(∞,∞,6)
3.6.3.∞.3.∞

(∞ 7 7)
t0(∞,7,7)

(∞.7)7
t01(∞,7,7)

(7.∞)2
t1(∞,7,7)

(7.∞)7
t12(∞,7,7)

7.14.∞.14
t2(∞,7,7)

7
t02(∞,7,7)

7.14.∞.14
t012(∞,7,7)

14.14.∞
s(∞,7,7)
3.7.3.7.3.∞

(∞ 8 7)
t0(∞,8,7)

(∞.7)8
t01(∞,8,7)

7.∞.8.∞
t1(∞,8,7)

(8.∞)7
h1(∞,8,7)
(14.4.14.∞)7
t12(∞,8,7)

7.16.∞.16
t2(∞,8,7)

(8.7)
t02(∞,8,7)

8.14.∞.14
h02(∞,8,7)
4.4.4.7.4.∞.4.7
t012(∞,8,7)

14.16.∞
s(∞,8,7)
3.7.3.8.3.∞

(∞ ∞ 7)
t0(∞,∞,7)

(∞.7)
t01(∞,∞,7)

7.∞.∞.∞
t1(∞,∞,7)

14
h1(∞,∞,7)
(14.∞)14
t12(∞,∞,7)

7.∞.∞.∞
t2(∞,∞,7)

(∞.7)
t02(∞,∞,7)

(∞.14)2
h02(∞,∞,7)
(4.∞.4.7)2
t012(∞,∞,7)

14.∞.∞
s(∞,∞,7)
3.7.3.∞.3.∞

(∞ 8 8)
t0(∞,8,8)

(∞.8)8
h0(∞,8,8)
(16.∞.16.4)8
t01(∞,8,8)

(8.∞)2
h01(∞,8,8)
(4.4.4.∞)2
t1(∞,8,8)

(8.∞)8
h1(∞,8,8)
(16.4.16.∞)8
t12(∞,8,8)

8.16.∞.16
h12(∞,8,8)
4.4.4.8.4.∞.4.8
t2(∞,8,8)

8
h2(∞,8,8)
(∞.4)
t02(∞,8,8)

8.16.∞.16
h02(∞,8,8)
4.4.4.8.4.∞.4.8
t012(∞,8,8)

16.16.∞
s(∞,8,8)
3.8.3.8.3.∞

(∞ ∞ 8)
t0(∞,∞,8)

(∞.8)
h0(∞,∞,8)
(∞.∞.∞.4)
t01(∞,∞,8)

8.∞.∞.∞
h01(∞,∞,8)
4.4.4.∞.4.∞.4.∞
t1(∞,∞,8)

16
h1(∞,∞,8)
(16.∞)16
t12(∞,∞,8)

8.∞.∞.∞
h12(∞,∞,8)
4.4.4.∞.4.∞.4.∞
t2(∞,∞,8)

(∞.8)
h2(∞,∞,8)
(∞.∞.∞.4)
t02(∞,∞,8)

(∞.16)2
h02(∞,∞,8)
(4.∞.4.8)2
t012(∞,∞,8)

16.∞.∞
s(∞,∞,8)
3.8.3.∞.3.∞

(∞ ∞ ∞)
t0(∞,∞,∞)

h0(∞,∞,∞)
(∞.∞)
t01(∞,∞,∞)

(∞.∞)2
h01(∞,∞,∞)
(4.∞.4.∞)2
t1(∞,∞,∞)

h1(∞,∞,∞)
(∞.∞)
t12(∞,∞,∞)

(∞.∞)2
h12(∞,∞,∞)
(4.∞.4.∞)2
t2(∞,∞,∞)

h2(∞,∞,∞)
(∞.∞)
t02(∞,∞,∞)

(∞.∞)2
h02(∞,∞,∞)
(4.∞.4.∞)2
t012(∞,∞,∞)

3
s(∞,∞,∞)
(3.∞)3

References

[edit]

External links

[edit]
Wikimedia Commons has media related toUniform tilings of the hyperbolic plane.


Other
Spherical
Regular
Semi-
regular
Hyper-
bolic
Retrieved from "https://en.wikipedia.org/w/index.php?title=Uniform_tilings_in_hyperbolic_plane&oldid=1320306084"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp