

Ingeometry, auniform 4-polytope (oruniform polychoron)[1] is a 4-dimensionalpolytope which isvertex-transitive and whose cells areuniform polyhedra, and faces areregular polygons.
There are 47 non-prismaticconvex uniform 4-polytopes. There are two infinite sets of convex prismatic forms, along with 17 cases arising as prisms of the convex uniform polyhedra. There are also an unknown number of non-convex star forms.
Regular 4-polytopes are a subset of the uniform 4-polytopes, which satisfy additional requirements.Regular 4-polytopes can be expressed withSchläfli symbol {p,q,r} have cells of type {p,q}, faces of type {p}, edge figures {r}, andvertex figures {q,r}.
The existence of a regular 4-polytope {p,q,r} is constrained by the existence of the regular polyhedra {p,q} which becomes cells, and {q,r} which becomes thevertex figure.
Existence as a finite 4-polytope is dependent upon an inequality:[18]
The 16regular 4-polytopes, with the property that all cells, faces, edges, and vertices are congruent:
The 24 mirrors ofF4 can be decomposed into 2 orthogonalD4 groups:
|
The 10 mirrors ofB3×A1 can be decomposed into orthogonal groups, 4A1 andD3:
|
There are 5 fundamental mirror symmetrypoint group families in 4-dimensions:A4 =





,B4 =





,D4 =



,F4 =





,H4 =





.[10] There are also 3 prismatic groupsA3A1 =





,B3A1 =





,H3A1 =





, and duoprismatic groups: I2(p)×I2(q) =





. Each group defined by aGoursat tetrahedronfundamental domain bounded by mirror planes.
Each reflective uniform 4-polytope can be constructed in one or more reflective point group in 4 dimensions by aWythoff construction, represented by rings around permutations of nodes in aCoxeter diagram. Mirrorhyperplanes can be grouped, as seen by colored nodes, separated by even-branches. Symmetry groups of the form [a,b,a], have an extended symmetry, [[a,b,a]], doubling the symmetry order. This includes [3,3,3], [3,4,3], and [p,2,p]. Uniform polytopes in these group with symmetric rings contain this extended symmetry.
If all mirrors of a given color are unringed (inactive) in a given uniform polytope, it will have a lower symmetry construction by removing all of the inactive mirrors. If all the nodes of a given color are ringed (active), analternation operation can generate a new 4-polytope with chiral symmetry, shown as "empty" circled nodes", but the geometry isnot generally adjustable to create uniform solutions.
| Weyl group | Conway Quaternion | Abstract structure | Order | Coxeter diagram | Coxeter notation | Commutator subgroup | Coxeter number (h) | Mirrors m=2h | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Irreducible | ||||||||||||
| A4 | +1/60[I×I].21 | S5 | 120 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [3,3,3] | [3,3,3]+ | 5 | 10![]() | |||
| D4 | ±1/3[T×T].2 | 1/2.2S4 | 192 | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | [31,1,1] | [31,1,1]+ | 6 | 12![]() | |||
| B4 | ±1/6[O×O].2 | 2S4 = S2≀S4 | 384 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [4,3,3] | 8 | 4![]() | 12![]() | |||
| F4 | ±1/2[O×O].23 | 3.2S4 | 1152 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [3,4,3] | [3+,4,3+] | 12 | 12![]() | 12![]() | ||
| H4 | ±[I×I].2 | 2.(A5×A5).2 | 14400 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [5,3,3] | [5,3,3]+ | 30 | 60![]() | |||
| Prismatic groups | ||||||||||||
| A3A1 | +1/24[O×O].23 | S4×D1 | 48 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [3,3,2] = [3,3]×[ ] | [3,3]+ | - | 6![]() | 1![]() | ||
| B3A1 | ±1/24[O×O].2 | S4×D1 | 96 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [4,3,2] = [4,3]×[ ] | - | 3![]() | 6![]() | 1![]() | ||
| H3A1 | ±1/60[I×I].2 | A5×D1 | 240 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [5,3,2] = [5,3]×[ ] | [5,3]+ | - | 15![]() | 1![]() | ||
| Duoprismatic groups (Use 2p,2q for even integers) | ||||||||||||
| I2(p)I2(q) | ±1/2[D2p×D2q] | Dp×Dq | 4pq | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [p,2,q] = [p]×[q] | [p+,2,q+] | - | p![]() | q![]() | ||
| I2(2p)I2(q) | ±1/2[D4p×D2q] | D2p×Dq | 8pq | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [2p,2,q] = [2p]×[q] | - | p![]() | p![]() | q![]() | ||
| I2(2p)I2(2q) | ±1/2[D4p×D4q] | D2p×D2q | 16pq | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [2p,2,2q] = [2p]×[2q] | - | p![]() | p![]() | q![]() | q![]() | |
There are 64 convex uniform 4-polytopes, including the 6 regular convex 4-polytopes, and excluding the infinite sets of theduoprisms and theantiprismatic prisms.
These 64 uniform 4-polytopes are indexed below by George Olshevsky. Repeated symmetry forms are indexed in brackets.
In addition to the 64 above, there are 2 infinite prismatic sets that generate all of the remaining convex forms:
The 5-cell hasdiploid pentachoric [3,3,3] symmetry,[10] oforder 120, isomorphic to the permutations of five elements, because all pairs of vertices are related in the same way.
Facets (cells) are given, grouped in their Coxeter diagram locations by removing specified nodes.
| # | Name Bowers name (and acronym) | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() ![]() (5) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() ![]() (10) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() ![]() (10) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() ![]() (5) | Cells | Faces | Edges | Vertices | ||||
| 1 | 5-cell Pentachoron[10] (pen) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,3,3} | (4) (3.3.3) | 5 | 10 | 10 | 5 | ||||
| 2 | rectified 5-cell Rectified pentachoron (rap) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{3,3,3} | (3) (3.3.3.3) | (2) (3.3.3) | 10 | 30 | 30 | 10 | |||
| 3 | truncated 5-cell Truncated pentachoron (tip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{3,3,3} | (3) (3.6.6) | (1) (3.3.3) | 10 | 30 | 40 | 20 | |||
| 4 | cantellated 5-cell Small rhombated pentachoron (srip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{3,3,3} | (2) (3.4.3.4) | (2) (3.4.4) | (1) (3.3.3.3) | 20 | 80 | 90 | 30 | ||
| 7 | cantitruncated 5-cell Great rhombated pentachoron (grip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{3,3,3} | (2) (4.6.6) | (1) (3.4.4) | (1) (3.6.6) | 20 | 80 | 120 | 60 | ||
| 8 | runcitruncated 5-cell Prismatorhombated pentachoron (prip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3{3,3,3} | (1) (3.6.6) | (2) (4.4.6) | (1) (3.4.4) | (1) (3.4.3.4) | 30 | 120 | 150 | 60 | |
| # | Name Bowers name (and acronym) | Vertex figure | Coxeter diagram![]() ![]() ![]() ![]() ![]() ![]() ![]() andSchläfli symbols | Cell counts by location | Element counts | |||||
|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3-0![]() ![]() ![]() ![]() ![]() ![]() ![]() (10) | Pos. 1-2![]() ![]() ![]() ![]() ![]() ![]() ![]() (20) | Alt | Cells | Faces | Edges | Vertices | ||||
| 5 | *runcinated 5-cell Small prismatodecachoron (spid) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,3{3,3,3} | (2) (3.3.3) | (6) (3.4.4) | 30 | 70 | 60 | 20 | ||
| 6 | *bitruncated 5-cell Decachoron (deca) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2t{3,3,3} | (4) (3.6.6) | 10 | 40 | 60 | 30 | |||
| 9 | *omnitruncated 5-cell Great prismatodecachoron (gippid) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3{3,3,3} | (2) (4.6.6) | (2) (4.4.6) | 30 | 150 | 240 | 120 | ||
| Nonuniform | omnisnub 5-cell Snub decachoron (snad) Snub pentachoron (snip)[19] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ht0,1,2,3{3,3,3} | (3.3.3.3.3) | (3.3.3.3) | (3.3.3) | 90 | 300 | 270 | 60 | |
The three uniform 4-polytopes forms marked with anasterisk,*, have the higherextended pentachoric symmetry, of order 240, [[3,3,3]] because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual. There is one small index subgroup [3,3,3]+, order 60, or its doubling [[3,3,3]]+, order 120, defining anomnisnub 5-cell which is listed for completeness, but is not uniform.
This family hasdiploid hexadecachoric symmetry,[10] [4,3,3], oforder 24×16=384: 4!=24 permutations of the four axes, 24=16 for reflection in each axis. There are 3 small index subgroups, with the first two generate uniform 4-polytopes which are also repeated in other families, [1+,4,3,3], [4,(3,3)+], and [4,3,3]+, all order 192.
| # | Name (Bowers name and acronym) | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() ![]() (8) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() (24) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() (32) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() ![]() (16) | Cells | Faces | Edges | Vertices | |||||
| 10 | tesseract or 8-cell Tesseract (tes) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {4,3,3} | (4) (4.4.4) | 8 | 24 | 32 | 16 | |||||
| 11 | Rectified tesseract (rit) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{4,3,3} | (3) (3.4.3.4) | (2) (3.3.3) | 24 | 88 | 96 | 32 | ||||
| 13 | Truncated tesseract (tat) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{4,3,3} | (3) (3.8.8) | (1) (3.3.3) | 24 | 88 | 128 | 64 | ||||
| 14 | Cantellated tesseract Small rhombated tesseract (srit) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{4,3,3} | (2) (3.4.4.4) | (2) (3.4.4) | (1) (3.3.3.3) | 56 | 248 | 288 | 96 | |||
| 15 | Runcinated tesseract (alsoruncinated 16-cell) Small disprismatotesseractihexadecachoron (sidpith) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,3{4,3,3} | (1) (4.4.4) | (3) (4.4.4) | (3) (3.4.4) | (1) (3.3.3) | 80 | 208 | 192 | 64 | ||
| 16 | Bitruncated tesseract (alsobitruncated 16-cell) Tesseractihexadecachoron (tah) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2t{4,3,3} | (2) (4.6.6) | (2) (3.6.6) | 24 | 120 | 192 | 96 | ||||
| 18 | Cantitruncated tesseract Great rhombated tesseract (grit) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{4,3,3} | (2) (4.6.8) | (1) (3.4.4) | (1) (3.6.6) | 56 | 248 | 384 | 192 | |||
| 19 | Runcitruncated tesseract Prismatorhombated hexadecachoron (proh) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3{4,3,3} | (1) (3.8.8) | (2) (4.4.8) | (1) (3.4.4) | (1) (3.4.3.4) | 80 | 368 | 480 | 192 | ||
| 21 | Omnitruncated tesseract (alsoomnitruncated 16-cell) Great disprismatotesseractihexadecachoron (gidpith) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3{3,3,4} | (1) (4.6.8) | (1) (4.4.8) | (1) (4.4.6) | (1) (4.6.6) | 80 | 464 | 768 | 384 | ||
| # | Name (Bowers style acronym) | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() ![]() (8) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() (24) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() (32) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() ![]() (16) | Alt | Cells | Faces | Edges | Vertices | ||||
| [12] | Half tesseract Demitesseract =16-cell (hex) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h{4,3,3}={3,3,4} | (4) (3.3.3) | (4) (3.3.3) | 16 | 32 | 24 | 8 | ||||
| [17] | Cantic tesseract =Truncated 16-cell (thex) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h2{4,3,3}=t{4,3,3} | (4) (6.6.3) | (1) (3.3.3.3) | 24 | 96 | 120 | 48 | ||||
| [11] | Runcic tesseract =Rectified tesseract (rit) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h3{4,3,3}=r{4,3,3} | (3) (3.4.3.4) | (2) (3.3.3) | 24 | 88 | 96 | 32 | ||||
| [16] | Runcicantic tesseract =Bitruncated tesseract (tah) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h2,3{4,3,3}=2t{4,3,3} | (2) (3.4.3.4) | (2) (3.6.6) | 24 | 120 | 192 | 96 | ||||
| [11] | =Rectified tesseract (rat) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h1{4,3,3}=r{4,3,3} | 24 | 88 | 96 | 32 | ||||||
| [16] | =Bitruncated tesseract (tah) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h1,2{4,3,3}=2t{4,3,3} | 24 | 120 | 192 | 96 | ||||||
| [23] | =Rectified 24-cell (rico) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h1,3{4,3,3}=rr{3,3,4} | 48 | 240 | 288 | 96 | ||||||
| [24] | =Truncated 24-cell (tico) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() h1,2,3{4,3,3}=tr{3,3,4} | 48 | 240 | 384 | 192 | ||||||
| # | Name (Bowers style acronym) | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() ![]() (8) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() (24) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() (32) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() ![]() (16) | Alt | Cells | Faces | Edges | Vertices | ||||
| Nonuniform | omnisnub tesseract Snub tesseract (snet)[20] (Oromnisnub 16-cell) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ht0,1,2,3{4,3,3} | (1) (3.3.3.3.4) | (1) (3.3.3.4) | (1) (3.3.3.3) | (1) (3.3.3.3.3) | (4) (3.3.3) | 272 | 944 | 864 | 192 | |
| # | Name (Bowers name and acronym) | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() ![]() (8) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() (24) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() (32) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() ![]() (16) | Alt | Cells | Faces | Edges | Vertices | ||||
| 12 | 16-cell Hexadecachoron[10] (hex) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,3,4} | (8) (3.3.3) | 16 | 32 | 24 | 8 | |||||
| [22] | *Rectified 16-cell (Same as24-cell) (ico) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() r{3,3,4} | (2) (3.3.3.3) | (4) (3.3.3.3) | 24 | 96 | 96 | 24 | ||||
| 17 | Truncated 16-cell Truncated hexadecachoron (thex) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{3,3,4} | (1) (3.3.3.3) | (4) (3.6.6) | 24 | 96 | 120 | 48 | ||||
| [23] | *Cantellated 16-cell (Same asrectified 24-cell) (rico) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{3,3,4} | (1) (3.4.3.4) | (2) (4.4.4) | (2) (3.4.3.4) | 48 | 240 | 288 | 96 | |||
| [15] | Runcinated 16-cell (alsoruncinated tesseract) (sidpith) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,3{3,3,4} | (1) (4.4.4) | (3) (4.4.4) | (3) (3.4.4) | (1) (3.3.3) | 80 | 208 | 192 | 64 | ||
| [16] | Bitruncated 16-cell (alsobitruncated tesseract) (tah) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2t{3,3,4} | (2) (4.6.6) | (2) (3.6.6) | 24 | 120 | 192 | 96 | ||||
| [24] | *Cantitruncated 16-cell (Same astruncated 24-cell) (tico) | ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{3,3,4} | (1) (4.6.6) | (1) (4.4.4) | (2) (4.6.6) | 48 | 240 | 384 | 192 | |||
| 20 | Runcitruncated 16-cell Prismatorhombated tesseract (prit) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3{3,3,4} | (1) (3.4.4.4) | (1) (4.4.4) | (2) (4.4.6) | (1) (3.6.6) | 80 | 368 | 480 | 192 | ||
| [21] | Omnitruncated 16-cell (alsoomnitruncated tesseract) (gidpith) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3{3,3,4} | (1) (4.6.8) | (1) (4.4.8) | (1) (4.4.6) | (1) (4.6.6) | 80 | 464 | 768 | 384 | ||
| [31] | alternated cantitruncated 16-cell (Same as thesnub 24-cell) (sadi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() sr{3,3,4} | (1) (3.3.3.3.3) | (1) (3.3.3) | (2) (3.3.3.3.3) | (4) (3.3.3) | 144 | 480 | 432 | 96 | ||
| Nonuniform | Runcic snub rectified 16-cell Pyritosnub tesseract (pysnet) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() sr3{3,3,4} | (1) (3.4.4.4) | (2) (3.4.4) | (1) (4.4.4) | (1) (3.3.3.3.3) | (2) (3.4.4) | 176 | 656 | 672 | 192 | |
Thesnub 24-cell is repeat to this family for completeness. It is an alternation of thecantitruncated 16-cell ortruncated 24-cell, with the half symmetry group [(3,3)+,4]. The truncated octahedral cells become icosahedra. The cubes becomes tetrahedra, and 96 new tetrahedra are created in the gaps from the removed vertices.
This family hasdiploid icositetrachoric symmetry,[10] [3,4,3], oforder 24×48=1152: the 48 symmetries of the octahedron for each of the 24 cells. There are 3 small index subgroups, with the first two isomorphic pairs generating uniform 4-polytopes which are also repeated in other families, [3+,4,3], [3,4,3+], and [3,4,3]+, all order 576.
| # | Name | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() ![]() (24) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() (96) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() ![]() (96) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() ![]() (24) | Cells | Faces | Edges | Vertices | ||||
| 22 | 24-cell (Same asrectified 16-cell) Icositetrachoron[10] (ico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,4,3} | (6) (3.3.3.3) | 24 | 96 | 96 | 24 | ||||
| 23 | rectified 24-cell (Same ascantellated 16-cell) Rectified icositetrachoron (rico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{3,4,3} | (3) (3.4.3.4) | (2) (4.4.4) | 48 | 240 | 288 | 96 | |||
| 24 | truncated 24-cell (Same ascantitruncated 16-cell) Truncated icositetrachoron (tico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{3,4,3} | (3) (4.6.6) | (1) (4.4.4) | 48 | 240 | 384 | 192 | |||
| 25 | cantellated 24-cell Small rhombated icositetrachoron (srico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{3,4,3} | (2) (3.4.4.4) | (2) (3.4.4) | (1) (3.4.3.4) | 144 | 720 | 864 | 288 | ||
| 28 | cantitruncated 24-cell Great rhombated icositetrachoron (grico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{3,4,3} | (2) (4.6.8) | (1) (3.4.4) | (1) (3.8.8) | 144 | 720 | 1152 | 576 | ||
| 29 | runcitruncated 24-cell Prismatorhombated icositetrachoron (prico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3{3,4,3} | (1) (4.6.6) | (2) (4.4.6) | (1) (3.4.4) | (1) (3.4.4.4) | 240 | 1104 | 1440 | 576 | |
| # | Name | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() ![]() (24) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() (96) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() ![]() (96) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() ![]() (24) | Alt | Cells | Faces | Edges | Vertices | ||||
| 31 | †snub 24-cell Snub disicositetrachoron (sadi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s{3,4,3} | (3) (3.3.3.3.3) | (1) (3.3.3) | (4) (3.3.3) | 144 | 480 | 432 | 96 | |||
| Nonuniform | runcic snub 24-cell Prismatorhombisnub icositetrachoron (prissi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s3{3,4,3} | (1) (3.3.3.3.3) | (2) (3.4.4) | (1) (3.6.6) | (3) Tricup | 240 | 960 | 1008 | 288 | ||
| [25] | cantic snub 24-cell (Same ascantellated 24-cell) (srico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s2{3,4,3} | (2) (3.4.4.4) | (1) (3.4.3.4) | (2) (3.4.4) | 144 | 720 | 864 | 288 | |||
| [29] | runcicantic snub 24-cell (Same asruncitruncated 24-cell) (prico) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s2,3{3,4,3} | (1) (4.6.6) | (1) (3.4.4) | (1) (3.4.4.4) | (2) (4.4.6) | 240 | 1104 | 1440 | 576 | ||
Like the 5-cell, the 24-cell is self-dual, and so the following three forms have twice as many symmetries, bringing their total to 2304 (extended icositetrachoric symmetry [[3,4,3]]).
| # | Name | Vertex figure | Coxeter diagram![]() ![]() ![]() ![]() ![]() ![]() ![]() andSchläfli symbols | Cell counts by location | Element counts | ||||
|---|---|---|---|---|---|---|---|---|---|
Pos. 3-0![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (48) | Pos. 2-1![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (192) | Cells | Faces | Edges | Vertices | ||||
| 26 | runcinated 24-cell Small prismatotetracontoctachoron (spic) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,3{3,4,3} | (2) (3.3.3.3) | (6) (3.4.4) | 240 | 672 | 576 | 144 | |
| 27 | bitruncated 24-cell Tetracontoctachoron (cont) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2t{3,4,3} | (4) (3.8.8) | 48 | 336 | 576 | 288 | ||
| 30 | omnitruncated 24-cell Great prismatotetracontoctachoron (gippic) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3{3,4,3} | (2) (4.6.8) | (2) (4.4.6) | 240 | 1392 | 2304 | 1152 | |
| # | Name | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | |||||
|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3-0![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (48) | Pos. 2-1![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (192) | Alt | Cells | Faces | Edges | Vertices | ||||
| Nonuniform | omnisnub 24-cell Snub tetracontoctachoron (snoc) Snub icositetrachoron (sni)[21] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ht0,1,2,3{3,4,3} | (2) (3.3.3.3.4) | (2) (3.3.3.3) | (4) (3.3.3) | 816 | 2832 | 2592 | 576 | |
This family hasdiploid hexacosichoric symmetry,[10] [5,3,3], oforder 120×120=24×600=14400: 120 for each of the 120 dodecahedra, or 24 for each of the 600 tetrahedra. There is one small index subgroups [5,3,3]+, all order 7200.
| # | Name (Bowers name and acronym) | Vertex figure | Coxeter diagram andSchläfli symbols | Cell counts by location | Element counts | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() ![]() (120) | Pos. 2![]() ![]() ![]() ![]() ![]() ![]() (720) | Pos. 1![]() ![]() ![]() ![]() ![]() ![]() (1200) | Pos. 0![]() ![]() ![]() ![]() ![]() ![]() (600) | Alt | Cells | Faces | Edges | Vertices | ||||
| 32 | 120-cell (hecatonicosachoron or dodecacontachoron)[10] Hecatonicosachoron (hi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {5,3,3} | (4) (5.5.5) | 120 | 720 | 1200 | 600 | |||||
| 33 | rectified 120-cell Rectified hecatonicosachoron (rahi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{5,3,3} | (3) (3.5.3.5) | (2) (3.3.3) | 720 | 3120 | 3600 | 1200 | ||||
| 36 | truncated 120-cell Truncated hecatonicosachoron (thi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{5,3,3} | (3) (3.10.10) | (1) (3.3.3) | 720 | 3120 | 4800 | 2400 | ||||
| 37 | cantellated 120-cell Small rhombated hecatonicosachoron (srahi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{5,3,3} | (2) (3.4.5.4) | (2) (3.4.4) | (1) (3.3.3.3) | 1920 | 9120 | 10800 | 3600 | |||
| 38 | runcinated 120-cell (alsoruncinated 600-cell) Small disprismatohexacosihecatonicosachoron (sidpixhi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,3{5,3,3} | (1) (5.5.5) | (3) (4.4.5) | (3) (3.4.4) | (1) (3.3.3) | 2640 | 7440 | 7200 | 2400 | ||
| 39 | bitruncated 120-cell (alsobitruncated 600-cell) Hexacosihecatonicosachoron (xhi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2t{5,3,3} | (2) (5.6.6) | (2) (3.6.6) | 720 | 4320 | 7200 | 3600 | ||||
| 42 | cantitruncated 120-cell Great rhombated hecatonicosachoron (grahi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{5,3,3} | (2) (4.6.10) | (1) (3.4.4) | (1) (3.6.6) | 1920 | 9120 | 14400 | 7200 | |||
| 43 | runcitruncated 120-cell Prismatorhombated hexacosichoron (prix) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3{5,3,3} | (1) (3.10.10) | (2) (4.4.10) | (1) (3.4.4) | (1) (3.4.3.4) | 2640 | 13440 | 18000 | 7200 | ||
| 46 | omnitruncated 120-cell (alsoomnitruncated 600-cell) Great disprismatohexacosihecatonicosachoron (gidpixhi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3{5,3,3} | (1) (4.6.10) | (1) (4.4.10) | (1) (4.4.6) | (1) (4.6.6) | 2640 | 17040 | 28800 | 14400 | ||
| Nonuniform | omnisnub 120-cell Snub hecatonicosachoron (snixhi)[22] (Same as theomnisnub 600-cell) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ht0,1,2,3{5,3,3} | (3.3.3.3.5) | (3.3.3.5) | (3.3.3.3) | (3.3.3.3.3) | (3.3.3) | 9840 | 35040 | 32400 | 7200 | |
| # | Name (Bowers style acronym) | Vertex figure | Coxeter diagram andSchläfli symbols | Symmetry | Cell counts by location | Element counts | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 3![]() ![]() ![]() ![]() ![]() (120) | Pos. 2![]() ![]() ![]() ![]() ![]() (720) | Pos. 1![]() ![]() ![]() ![]() ![]() (1200) | Pos. 0![]() ![]() ![]() ![]() ![]() (600) | Cells | Faces | Edges | Vertices | |||||
| 35 | 600-cell Hexacosichoron[10] (ex) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,3,5} | [5,3,3] order 14400 | (20) (3.3.3) | 600 | 1200 | 720 | 120 | ||||
| [47] | 20-diminished 600-cell =Grand antiprism (gap) | Nonwythoffian construction | [[10,2+,10]] order 400 Index 36 | (2) (3.3.3.5) | (12) (3.3.3) | 320 | 720 | 500 | 100 | |||
| [31] | 24-diminished 600-cell =Snub 24-cell (sadi) | Nonwythoffian construction | [3+,4,3] order 576 index 25 | (3) (3.3.3.3.3) | (5) (3.3.3) | 144 | 480 | 432 | 96 | |||
| Nonuniform | bi-24-diminished 600-cell Bi-icositetradiminished hexacosichoron (bidex) | Nonwythoffian construction | order 144 index 100 | (6) tdi | 48 | 192 | 216 | 72 | ||||
| 34 | rectified 600-cell Rectified hexacosichoron (rox) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{3,3,5} | [5,3,3] | (2) (3.3.3.3.3) | (5) (3.3.3.3) | 720 | 3600 | 3600 | 720 | |||
| Nonuniform | 120-diminished rectified 600-cell Swirlprismatodiminished rectified hexacosichoron (spidrox) | Nonwythoffian construction | order 1200 index 12 | (2) 3.3.3.5 | (2) 4.4.5 | (5) P4 | 840 | 2640 | 2400 | 600 | ||
| 41 | truncated 600-cell Truncated hexacosichoron (tex) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{3,3,5} | [5,3,3] | (1) (3.3.3.3.3) | (5) (3.6.6) | 720 | 3600 | 4320 | 1440 | |||
| 40 | cantellated 600-cell Small rhombated hexacosichoron (srix) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{3,3,5} | [5,3,3] | (1) (3.5.3.5) | (2) (4.4.5) | (1) (3.4.3.4) | 1440 | 8640 | 10800 | 3600 | ||
| [38] | runcinated 600-cell (alsoruncinated 120-cell) (sidpixhi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,3{3,3,5} | [5,3,3] | (1) (5.5.5) | (3) (4.4.5) | (3) (3.4.4) | (1) (3.3.3) | 2640 | 7440 | 7200 | 2400 | |
| [39] | bitruncated 600-cell (alsobitruncated 120-cell) (xhi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() 2t{3,3,5} | [5,3,3] | (2) (5.6.6) | (2) (3.6.6) | 720 | 4320 | 7200 | 3600 | |||
| 45 | cantitruncated 600-cell Great rhombated hexacosichoron (grix) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{3,3,5} | [5,3,3] | (1) (5.6.6) | (1) (4.4.5) | (2) (4.6.6) | 1440 | 8640 | 14400 | 7200 | ||
| 44 | runcitruncated 600-cell Prismatorhombated hecatonicosachoron (prahi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,3{3,3,5} | [5,3,3] | (1) (3.4.5.4) | (1) (4.4.5) | (2) (4.4.6) | (1) (3.6.6) | 2640 | 13440 | 18000 | 7200 | |
| [46] | omnitruncated 600-cell (alsoomnitruncated 120-cell) (gidpixhi) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3{3,3,5} | [5,3,3] | (1) (4.6.10) | (1) (4.4.10) | (1) (4.4.6) | (1) (4.6.6) | 2640 | 17040 | 28800 | 14400 | |
Thisdemitesseract family, [31,1,1], introduces no new uniform 4-polytopes, but it is worthy to repeat these alternative constructions. This family hasorder 12×16=192: 4!/2=12 permutations of the four axes, half as alternated, 24=16 for reflection in each axis. There is one small index subgroups that generating uniform 4-polytopes, [31,1,1]+, order 96.
| # | Name (Bowers style acronym) | Vertex figure | Coxeter diagram![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() | Cell counts by location | Element counts | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pos. 0![]() ![]() ![]() ![]() ![]() (8) | Pos. 2![]() ![]() ![]() (24) | Pos. 1![]() ![]() ![]() (8) | Pos. 3![]() ![]() ![]() ![]() ![]() (8) | Pos. Alt (96) | 3 | 2 | 1 | 0 | ||||
| [12] | demitesseract half tesseract (Same as16-cell) (hex) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() h{4,3,3} | (4) (3.3.3) | (4) (3.3.3) | 16 | 32 | 24 | 8 | ||||
| [17] | cantic tesseract (Same astruncated 16-cell) (thex) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() h2{4,3,3} | (1) (3.3.3.3) | (2) (3.6.6) | (2) (3.6.6) | 24 | 96 | 120 | 48 | |||
| [11] | runcic tesseract (Same asrectified tesseract) (rit) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() h3{4,3,3} | (1) (3.3.3) | (1) (3.3.3) | (3) (3.4.3.4) | 24 | 88 | 96 | 32 | |||
| [16] | runcicantic tesseract (Same asbitruncated tesseract) (tah) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() h2,3{4,3,3} | (1) (3.6.6) | (1) (3.6.6) | (2) (4.6.6) | 24 | 96 | 96 | 24 | |||
When the 3 bifurcated branch nodes are identically ringed, the symmetry can be increased by 6, as [3[31,1,1]] = [3,4,3], and thus these polytopes are repeated from the24-cell family.
| # | Name (Bowers style acronym) | Vertex figure | Coxeter diagram![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() | Cell counts by location | Element counts | |||||
|---|---|---|---|---|---|---|---|---|---|---|
Pos. 0,1,3![]() ![]() ![]() ![]() ![]() (24) | Pos. 2![]() ![]() ![]() (24) | Pos. Alt (96) | 3 | 2 | 1 | 0 | ||||
| [22] | rectified 16-cell (Same as24-cell) (ico) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() {31,1,1} = r{3,3,4} = {3,4,3} | (6) (3.3.3.3) | 48 | 240 | 288 | 96 | |||
| [23] | cantellated 16-cell (Same asrectified 24-cell) (rico) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() r{31,1,1} = rr{3,3,4} = r{3,4,3} | (3) (3.4.3.4) | (2) (4.4.4) | 24 | 120 | 192 | 96 | ||
| [24] | cantitruncated 16-cell (Same astruncated 24-cell) (tico) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() t{31,1,1} = tr{3,3,4} = t{3,4,3} | (3) (4.6.6) | (1) (4.4.4) | 48 | 240 | 384 | 192 | ||
| [31] | snub 24-cell (sadi) | ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() s{31,1,1} = sr{3,3,4} = s{3,4,3} | (3) (3.3.3.3.3) | (1) (3.3.3) | (4) (3.3.3) | 144 | 480 | 432 | 96 | |
Here again thesnub 24-cell, with the symmetry group [31,1,1]+ this time, represents an alternated truncation of the truncated 24-cell creating 96 new tetrahedra at the position of the deleted vertices. In contrast to its appearance within former groups as partly snubbed 4-polytope, only within this symmetry group it has the full analogy to the Kepler snubs, i.e. thesnub cube and thesnub dodecahedron.
There is one non-Wythoffian uniform convex 4-polytope, known as thegrand antiprism, consisting of 20pentagonal antiprisms forming two perpendicular rings joined by 300tetrahedra. It is loosely analogous to the three-dimensionalantiprisms, which consist of two parallelpolygons joined by a band oftriangles. Unlike them, however, the grand antiprism is not a member of an infinite family of uniform polytopes.
Its symmetry is theionic diminished Coxeter group, [[10,2+,10]], order 400.
| # | Name (Bowers style acronym) | Picture | Vertex figure | Coxeter diagram andSchläfli symbols | Cells by type | Element counts | Net | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Cells | Faces | Edges | Vertices | ||||||||
| 47 | grand antiprism (gap) | No symbol | 300 (3.3.3) | 20 (3.3.3.5) | 320 | 20{5} 700{3} | 500 | 100 | |||
A prismatic polytope is aCartesian product of two polytopes of lower dimension; familiar examples are the 3-dimensionalprisms, which are products of apolygon and aline segment. The prismatic uniform 4-polytopes consist of two infinite families:
The most obvious family of prismatic 4-polytopes is thepolyhedral prisms, i.e. products of a polyhedron with aline segment. The cells of such a 4-polytopes are two identical uniform polyhedra lying in parallelhyperplanes (thebase cells) and a layer of prisms joining them (thelateral cells). This family includes prisms for the 75 nonprismaticuniform polyhedra (of which 18 are convex; one of these, the cube-prism, is listed above as thetesseract).[citation needed]
There are18 convex polyhedral prisms created from 5Platonic solids and 13Archimedean solids as well as for the infinite families of three-dimensionalprisms andantiprisms.[citation needed] The symmetry number of a polyhedral prism is twice that of the base polyhedron.
Thisprismatic tetrahedral symmetry is [3,3,2], order 48. There are two index 2 subgroups, [(3,3)+,2] and [3,3,2]+, but the second doesn't generate a uniform 4-polytope.
| # | Name (Bowers style acronym) | Picture | Vertex figure | Coxeter diagram andSchläfli symbols | Cells by type | Element counts | Net | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cells | Faces | Edges | Vertices | |||||||||
| 48 | Tetrahedral prism (tepe) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,3}×{ } t0,3{3,3,2} | 2 3.3.3 | 4 3.4.4 | 6 | 8 {3} 6 {4} | 16 | 8 | ||||
| 49 | Truncated tetrahedral prism (tuttip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{3,3}×{ } t0,1,3{3,3,2} | 2 3.6.6 | 4 3.4.4 | 4 4.4.6 | 10 | 8 {3} 18 {4} 8 {6} | 48 | 24 | |||
| # | Name (Bowers style acronym) | Picture | Vertex figure | Coxeter diagram andSchläfli symbols | Cells by type | Element counts | Net | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cells | Faces | Edges | Vertices | |||||||||
| [51] | Rectified tetrahedral prism (Same asoctahedral prism) (ope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{3,3}×{ } t1,3{3,3,2} | 2 3.3.3.3 | 4 3.4.4 | 6 | 16 {3} 12 {4} | 30 | 12 | ||||
| [50] | Cantellated tetrahedral prism (Same ascuboctahedral prism) (cope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{3,3}×{ } t0,2,3{3,3,2} | 2 3.4.3.4 | 8 3.4.4 | 6 4.4.4 | 16 | 16 {3} 36 {4} | 60 | 24 | |||
| [54] | Cantitruncated tetrahedral prism (Same astruncated octahedral prism) (tope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{3,3}×{ } t0,1,2,3{3,3,2} | 2 4.6.6 | 8 6.4.4 | 6 4.4.4 | 16 | 48 {4} 16 {6} | 96 | 48 | |||
| [59] | Snub tetrahedral prism (Same asicosahedral prism) (ipe) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() sr{3,3}×{ } | 2 3.3.3.3.3 | 20 3.4.4 | 22 | 40 {3} 30 {4} | 72 | 24 | ||||
| Nonuniform | omnisnub tetrahedral antiprism Pyritohedral icosahedral antiprism (pikap) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 2 3.3.3.3.3 | 8 3.3.3.3 | 6+24 3.3.3 | 40 | 16+96 {3} | 96 | 24 | |||
Thisprismatic octahedral family symmetry is [4,3,2], order 96. There are 6 subgroups of index 2, order 48 that are expressed in alternated 4-polytopes below.Symmetries are [(4,3)+,2], [1+,4,3,2], [4,3,2+], [4,3+,2], [4,(3,2)+], and [4,3,2]+.
| # | Name (Bowers style acronym) | Picture | Vertex figure | Coxeter diagram andSchläfli symbols | Cells by type | Element counts | Net | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cells | Faces | Edges | Vertices | ||||||||||
| [10] | Cubic prism (Same astesseract) (Same as4-4 duoprism) (tes) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {4,3}×{ } t0,3{4,3,2} | 2 4.4.4 | 6 4.4.4 | 8 | 24 {4} | 32 | 16 | |||||
| 50 | Cuboctahedral prism (Same ascantellated tetrahedral prism) (cope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{4,3}×{ } t1,3{4,3,2} | 2 3.4.3.4 | 8 3.4.4 | 6 4.4.4 | 16 | 16 {3} 36 {4} | 60 | 24 | ||||
| 51 | Octahedral prism (Same asrectified tetrahedral prism) (Same astriangular antiprismatic prism) (ope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,4}×{ } t2,3{4,3,2} | 2 3.3.3.3 | 8 3.4.4 | 10 | 16 {3} 12 {4} | 30 | 12 | |||||
| 52 | Rhombicuboctahedral prism (sircope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{4,3}×{ } t0,2,3{4,3,2} | 2 3.4.4.4 | 8 3.4.4 | 18 4.4.4 | 28 | 16 {3} 84 {4} | 120 | 48 | ||||
| 53 | Truncated cubic prism (ticcup) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{4,3}×{ } t0,1,3{4,3,2} | 2 3.8.8 | 8 3.4.4 | 6 4.4.8 | 16 | 16 {3} 36 {4} 12 {8} | 96 | 48 | ||||
| 54 | Truncated octahedral prism (Same ascantitruncated tetrahedral prism) (tope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{3,4}×{ } t1,2,3{4,3,2} | 2 4.6.6 | 6 4.4.4 | 8 4.4.6 | 16 | 48 {4} 16 {6} | 96 | 48 | ||||
| 55 | Truncated cuboctahedral prism (gircope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{4,3}×{ } t0,1,2,3{4,3,2} | 2 4.6.8 | 12 4.4.4 | 8 4.4.6 | 6 4.4.8 | 28 | 96 {4} 16 {6} 12 {8} | 192 | 96 | |||
| 56 | Snub cubic prism (sniccup) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() sr{4,3}×{ } | 2 3.3.3.3.4 | 32 3.4.4 | 6 4.4.4 | 40 | 64 {3} 72 {4} | 144 | 48 | ||||
| [48] | Tetrahedral prism (tepe) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() h{4,3}×{ } | 2 3.3.3 | 4 3.4.4 | 6 | 8 {3} 6 {4} | 16 | 8 | |||||
| [49] | Truncated tetrahedral prism (tuttip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() h2{4,3}×{ } | 2 3.3.6 | 4 3.4.4 | 4 4.4.6 | 6 | 8 {3} 6 {4} | 16 | 8 | ||||
| [50] | Cuboctahedral prism (cope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{3,3}×{ } | 2 3.4.3.4 | 8 3.4.4 | 6 4.4.4 | 16 | 16 {3} 36 {4} | 60 | 24 | ||||
| [52] | Rhombicuboctahedral prism (sircope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s2{3,4}×{ } | 2 3.4.4.4 | 8 3.4.4 | 18 4.4.4 | 28 | 16 {3} 84 {4} | 120 | 48 | ||||
| [54] | Truncated octahedral prism (tope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{3,3}×{ } | 2 4.6.6 | 6 4.4.4 | 8 4.4.6 | 16 | 48 {4} 16 {6} | 96 | 48 | ||||
| [59] | Icosahedral prism (ipe) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s{3,4}×{ } | 2 3.3.3.3.3 | 20 3.4.4 | 22 | 40 {3} 30 {4} | 72 | 24 | |||||
| [12] | 16-cell (hex) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s{2,4,3} | 2+6+8 3.3.3.3 | 16 | 32 {3} | 24 | 8 | ||||||
| Nonuniform | Omnisnub tetrahedral antiprism = Pyritohedral icosahedral antiprism (pikap) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() sr{2,3,4} | 2 3.3.3.3.3 | 8 3.3.3.3 | 6+24 3.3.3 | 40 | 16+96 {3} | 96 | 24 | ||||
| Nonuniform | Edge-snub octahedral hosochoron Pyritosnub alterprism (pysna) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() sr3{2,3,4} | 2 3.4.4.4 | 6 4.4.4 | 8 3.3.3.3 | 24 3.4.4 | 40 | 16+48 {3} 12+12+24+24 {4} | 144 | 48 | |||
| Nonuniform | Omnisnub cubic antiprism Snub cubic antiprism (sniccap) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 2 3.3.3.3.4 | 12+48 3.3.3 | 8 3.3.3.3 | 6 3.3.3.4 | 76 | 16+192 {3} 12 {4} | 192 | 48 | |||
| Nonuniform | Runcic snub cubic hosochoron Truncated tetrahedral alterprism (tuta) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() s3{2,4,3} | 2 3.6.6 | 6 3.3.3 | 8 triangular cupola | 16 | 52 | 60 | 24 | ||||
Thisprismatic icosahedral symmetry is [5,3,2], order 240. There are two index 2 subgroups, [(5,3)+,2] and [5,3,2]+, but the second doesn't generate a uniform polychoron.
| # | Name (Bowers name and acronym) | Picture | Vertex figure | Coxeter diagram andSchläfli symbols | Cells by type | Element counts | Net | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cells | Faces | Edges | Vertices | ||||||||||
| 57 | Dodecahedral prism (dope) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {5,3}×{ } t0,3{5,3,2} | 2 5.5.5 | 12 4.4.5 | 14 | 30 {4} 24 {5} | 80 | 40 | |||||
| 58 | Icosidodecahedral prism (iddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() r{5,3}×{ } t1,3{5,3,2} | 2 3.5.3.5 | 20 3.4.4 | 12 4.4.5 | 34 | 40 {3} 60 {4} 24 {5} | 150 | 60 | ||||
| 59 | Icosahedral prism (same assnub tetrahedral prism) (ipe) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() {3,5}×{ } t2,3{5,3,2} | 2 3.3.3.3.3 | 20 3.4.4 | 22 | 40 {3} 30 {4} | 72 | 24 | |||||
| 60 | Truncated dodecahedral prism (tiddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{5,3}×{ } t0,1,3{5,3,2} | 2 3.10.10 | 20 3.4.4 | 12 4.4.10 | 34 | 40 {3} 90 {4} 24 {10} | 240 | 120 | ||||
| 61 | Rhombicosidodecahedral prism (sriddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() rr{5,3}×{ } t0,2,3{5,3,2} | 2 3.4.5.4 | 20 3.4.4 | 30 4.4.4 | 12 4.4.5 | 64 | 40 {3} 180 {4} 24 {5} | 300 | 120 | |||
| 62 | Truncated icosahedral prism (tipe) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() t{3,5}×{ } t1,2,3{5,3,2} | 2 5.6.6 | 12 4.4.5 | 20 4.4.6 | 34 | 90 {4} 24 {5} 40 {6} | 240 | 120 | ||||
| 63 | Truncated icosidodecahedral prism (griddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() tr{5,3}×{ } t0,1,2,3{5,3,2} | 2 4.6.10 | 30 4.4.4 | 20 4.4.6 | 12 4.4.10 | 64 | 240 {4} 40 {6} 24 {10} | 480 | 240 | |||
| 64 | Snub dodecahedral prism (sniddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() sr{5,3}×{ } | 2 3.3.3.3.5 | 80 3.4.4 | 12 4.4.5 | 94 | 160 {3} 150 {4} 24 {5} | 360 | 120 | ||||
| Nonuniform | Omnisnub dodecahedral antiprism Snub dodecahedral antiprism (sniddap) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 2 3.3.3.3.5 | 30+120 3.3.3 | 20 3.3.3.3 | 12 3.3.3.5 | 184 | 20+240 {3} 24 {5} | 220 | 120 | |||

The second is the infinite family ofuniform duoprisms, products of tworegular polygons. A duoprism'sCoxeter-Dynkin diagram is





. Itsvertex figure is adisphenoid tetrahedron,
.
This family overlaps with the first: when one of the two "factor" polygons is a square, the product is equivalent to a hyperprism whose base is a three-dimensional prism. The symmetry number of a duoprism whose factors are ap-gon and aq-gon (a "p,q-duoprism") is 4pq ifp≠q; if the factors are bothp-gons, the symmetry number is 8p2. The tesseract can also be considered a 4,4-duoprism.
The extendedf-vector of {p}×{q} is (p,p,1)*(q,q,1) = (pq,2pq,pq+p+q,p+q).
There is no uniform analogue in four dimensions to the infinite family of three-dimensionalantiprisms.
Infinite set ofp-q duoprism -





-pq-gonal prisms,qp-gonal prisms:
| Name | Coxeter graph | Cells | Images | Net |
|---|---|---|---|---|
| 3-3 duoprism (triddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 3+3 triangular prisms | ||
| 3-4 duoprism (tisdip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 3 cubes 4 triangular prisms | ||
| 4-4 duoprism (tes) (same as tesseract) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 4+4 cubes | ||
| 3-5 duoprism (trapedip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 3 pentagonal prisms 5 triangular prisms | ||
| 4-5 duoprism (squipdip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 4 pentagonal prisms 5 cubes | ||
| 5-5 duoprism (pedip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 5+5 pentagonal prisms | ||
| 3-6 duoprism (thiddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 3 hexagonal prisms 6 triangular prisms | ||
| 4-6 duoprism (shiddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 4 hexagonal prisms 6 cubes | ||
| 5-6 duoprism (phiddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 5 hexagonal prisms 6 pentagonal prisms | ||
| 6-6 duoprism (hiddip) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 6+6 hexagonal prisms |
3-3 | 3-4 | 3-5 | 3-6 | 3-7 | 3-8 |
4-3 | 4-4 | 4-5 | 4-6 | 4-7 | 4-8 |
5-3 | 5-4 | 5-5 | 5-6 | 5-7 | 5-8 |
6-3 | 6-4 | 6-5 | 6-6 | 6-7 | 6-8 |
7-3 | 7-4 | 7-5 | 7-6 | 7-7 | 7-8 |
8-3 | 8-4 | 8-5 | 8-6 | 8-7 | 8-8 |
Alternations are possible.





=







gives the family ofduoantiprisms, but they generally cannot be made uniform. p=q=2 is the onlyconvex case that can be made uniform, giving the regular 16-cell. p=5, q=5/3 is the only nonconvex case that can be made uniform, giving the so-calledgreat duoantiprism.






gives the p-2q-gonalprismantiprismoid (an edge-alternation of the 2p-4q duoprism), but this cannot be made uniform in any cases.[23]
The infinite set of uniform prismatic prisms overlaps with the 4-p duoprisms: (p≥3) -





-p cubes and 4p-gonal prisms - (All are the same as4-p duoprism) The second polytope in the series is a lower symmetry of the regulartesseract, {4}×{4}.
| Name | {3}×{4} | {4}×{4} | {5}×{4} | {6}×{4} | {7}×{4} | {8}×{4} | {p}×{4} |
|---|---|---|---|---|---|---|---|
| Coxeter diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| Image | |||||||
| Cells | 3{4}×{} 4{3}×{} | 4{4}×{} 4{4}×{} | 5{4}×{} 4{5}×{} | 6{4}×{} 4{6}×{} | 7{4}×{} 4{7}×{} | 8{4}×{} 4{8}×{} | p{4}×{} 4{p}×{} |
| Net |
The infinite sets ofuniform antiprismatic prisms are constructed from two parallel uniformantiprisms): (p≥2) -





- 2p-gonal antiprisms, connected by 2p-gonal prisms and2p triangular prisms.
| Name | s{2,2}×{} | s{2,3}×{} | s{2,4}×{} | s{2,5}×{} | s{2,6}×{} | s{2,7}×{} | s{2,8}×{} | s{2,p}×{} |
|---|---|---|---|---|---|---|---|---|
| Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| Image | ||||||||
| Vertex figure | ||||||||
| Cells | 2s{2,2} (2) {2}×{}={4} 4{3}×{} | 2s{2,3} 2{3}×{} 6{3}×{} | 2s{2,4} 2{4}×{} 8{3}×{} | 2s{2,5} 2{5}×{} 10{3}×{} | 2s{2,6} 2{6}×{} 12{3}×{} | 2s{2,7} 2{7}×{} 14{3}×{} | 2s{2,8} 2{8}×{} 16{3}×{} | 2 s{2,p} 2 {p}×{} 2p {3}×{} |
| Net |
Ap-gonal antiprismatic prism has4p triangle,4p square and4 p-gon faces. It has10p edges, and4p vertices.





, analternation removes half the vertices, in two chiral sets of vertices from the ringed form



, however theuniform solution requires the vertex positions be adjusted for equal lengths. In four dimensions, this adjustment is only possible for 2 alternated figures, while the rest only exist as nonequilateral alternated figures.Coxeter showed only two uniform solutions for rank 4 Coxeter groups with all ringsalternated (shown with empty circle nodes). The first is





, s{21,1,1} which represented an index 24 subgroup (symmetry [2,2,2]+, order 8) form of thedemitesseract,





, h{4,3,3} (symmetry [1+,4,3,3] = [31,1,1], order 192). The second is



, s{31,1,1}, which is an index 6 subgroup (symmetry [31,1,1]+, order 96) form of thesnub 24-cell,





, s{3,4,3}, (symmetry [3+,4,3], order 576).
Other alternations, such as





, as an alternation from theomnitruncated tesseract





, can not be made uniform as solving for equal edge lengths are in generaloverdetermined (there are six equations but only four variables). Such nonuniform alternated figures can be constructed asvertex-transitive 4-polytopes by the removal of one of two half sets of the vertices of the full ringed figure, but will have unequal edge lengths. Just like uniform alternations, they will have half of the symmetry of uniform figure, like [4,3,3]+, order 192, is the symmetry of thealternated omnitruncated tesseract.[24]
Wythoff constructions with alternations producevertex-transitive figures that can be made equilateral, but not uniform because the alternated gaps (around the removed vertices) create cells that are not regular or semiregular. A proposed name for such figures isscaliform polytopes.[25] This category allows a subset ofJohnson solids as cells, for exampletriangular cupola.
Eachvertex configuration within a Johnson solid must exist within the vertex figure. For example, a square pyramid has two vertex configurations: 3.3.4 around the base, and 3.3.3.3 at the apex.
The nets and vertex figures of the four convex equilateral cases are given below, along with a list of cells around each vertex.
| Coxeter diagram | s3{2,4,3},![]() ![]() ![]() ![]() ![]() ![]() ![]() | s3{3,4,3},![]() ![]() ![]() ![]() ![]() ![]() ![]() | Others | |
|---|---|---|---|---|
| Relation | 24 of 48 vertices of rhombicuboctahedral prism | 288 of 576 vertices of runcitruncated 24-cell | 72 of 120 vertices of600-cell | 600 of 720 vertices ofrectified 600-cell |
| Projection | Two rings of pyramids | |||
| Net | runcic snub cubic hosochoron[26][27] | runcic snub 24-cell[28][29] | ||
| Cells | ||||
| Vertex figure | (1) 3.4.3.4:triangular cupola (2) 3.4.6: triangular cupola (1) 3.3.3:tetrahedron (1) 3.6.6:truncated tetrahedron | (1) 3.4.3.4: triangular cupola (2) 3.4.6: triangular cupola (2) 3.4.4:triangular prism (1) 3.6.6:truncated tetrahedron (1) 3.3.3.3.3:icosahedron | (2) 3.3.3.5:tridiminished icosahedron (4) 3.5.5: tridiminished icosahedron | (1) 3.3.3.3:square pyramid (4) 3.3.4: square pyramid (2) 4.4.5:pentagonal prism (2) 3.3.3.5pentagonal antiprism |
The 46 Wythoffian 4-polytopes include the sixconvex regular 4-polytopes. The other forty can be derived from the regular polychora by geometric operations which preserve most or all of theirsymmetries, and therefore may be classified by thesymmetry groups that they have in common.
Summary chart of truncation operations | Example locations of kaleidoscopic generator point on fundamental domain. |
The geometric operations that derive the 40 uniform 4-polytopes from the regular 4-polytopes aretruncating operations. A 4-polytope may be truncated at the vertices, edges or faces, leading to addition of cells corresponding to those elements, as shown in the columns of the tables below.
TheCoxeter-Dynkin diagram shows the four mirrors of the Wythoffian kaleidoscope as nodes, and the edges between the nodes are labeled by an integer showing the angle between the mirrors (π/nradians or 180/n degrees). Circled nodes show which mirrors are active for each form; a mirror is active with respect to a vertex that does not lie on it.
| Operation | Schläfli symbol | Symmetry | Coxeter diagram | Description |
|---|---|---|---|---|
| Parent | t0{p,q,r} | [p,q,r] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Original regular form {p,q,r} |
| Rectification | t1{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Truncation operation applied until the original edges are degenerated into points. | |
| Birectification (Rectified dual) | t2{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Face are fully truncated to points. Same as rectified dual. | |
| Trirectification (dual) | t3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Cells are truncated to points. Regular dual {r,q,p} | |
| Truncation | t0,1{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Each vertex is cut off so that the middle of each original edge remains. Where the vertex was, there appears a new cell, the parent'svertex figure. Each original cell is likewise truncated. | |
| Bitruncation | t1,2{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | A truncation between a rectified form and the dual rectified form. | |
| Tritruncation | t2,3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Truncated dual {r,q,p}. | |
| Cantellation | t0,2{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | A truncation applied to edges and vertices and defines a progression between the regular and dual rectified form. | |
| Bicantellation | t1,3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Cantellated dual {r,q,p}. | |
| Runcination (orexpansion) | t0,3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | A truncation applied to the cells, faces and edges; defines a progression between a regular form and the dual. | |
| Cantitruncation | t0,1,2{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Both thecantellation andtruncation operations applied together. | |
| Bicantitruncation | t1,2,3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Cantitruncated dual {r,q,p}. | |
| Runcitruncation | t0,1,3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Both theruncination andtruncation operations applied together. | |
| Runcicantellation | t0,2,3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Runcitruncated dual {r,q,p}. | |
| Omnitruncation (runcicantitruncation) | t0,1,2,3{p,q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Application of all three operators. | |
| Half | h{2p,3,q} | [1+,2p,3,q] =[(3,p,3),q] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Alternation of![]() ![]() ![]() ![]() ![]() ![]() ![]() , same as![]() ![]() ![]() ![]() ![]() ![]() |
| Cantic | h2{2p,3,q} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Same as![]() ![]() ![]() ![]() ![]() ![]() | |
| Runcic | h3{2p,3,q} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Same as![]() ![]() ![]() ![]() ![]() ![]() | |
| Runcicantic | h2,3{2p,3,q} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Same as![]() ![]() ![]() ![]() ![]() ![]() | |
| Quarter | q{2p,3,2q} | [1+,2p,3,2q,1+] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Same as![]() ![]() ![]() ![]() ![]() |
| Snub | s{p,2q,r} | [p+,2q,r] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Alternated truncation |
| Cantic snub | s2{p,2q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Cantellated alternated truncation | |
| Runcic snub | s3{p,2q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Runcinated alternated truncation | |
| Runcicantic snub | s2,3{p,2q,r} | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Runcicantellated alternated truncation | |
| Snub rectified | sr{p,q,2r} | [(p,q)+,2r] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Alternated truncated rectification |
| ht0,3{2p,q,2r} | [(2p,q,2r,2+)] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Alternated runcination | |
| Bisnub | 2s{2p,q,2r} | [2p,q+,2r] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Alternated bitruncation |
| Omnisnub | ht0,1,2,3{p,q,r} | [p,q,r]+ | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | Alternated omnitruncation |
See alsoconvex uniform honeycombs, some of which illustrate these operations as applied to the regularcubic honeycomb.
If two polytopes areduals of each other (such as the tesseract and 16-cell, or the 120-cell and 600-cell), thenbitruncating,runcinating oromnitruncating either produces the same figure as the same operation to the other. Thus where only the participle appears in the table it should be understood to apply to either parent.
The 46 uniform polychora constructed from the A4, B4, F4, H4 symmetry are given in this table by their full extended symmetry and Coxeter diagrams. The D4 symmetry is also included, though it only creates duplicates. Alternations are grouped by their chiral symmetry. All alternations are given, although thesnub 24-cell, with its 3 constructions from different families is the only one that is uniform. Counts in parentheses are either repeats or nonuniform. The Coxeter diagrams are given with subscript indices 1 through 46. The 3-3 and 4-4 duoprismatic family is included, the second for its relation to the B4 family.
| Coxeter group | Extended symmetry | Polychora | Chiral extended symmetry | Alternation honeycombs | ||
|---|---|---|---|---|---|---|
[3,3,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() | [3,3,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 120) | 6 | ![]() ![]() ![]() ![]() ![]() ![]() (1) |![]() ![]() ![]() ![]() ![]() ![]() (2) |![]() ![]() ![]() ![]() ![]() ![]() (3)![]() ![]() ![]() ![]() ![]() ![]() (4) |![]() ![]() ![]() ![]() ![]() ![]() (7) |![]() ![]() ![]() ![]() ![]() ![]() (8) | |||
[2+[3,3,3]]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 240) | 3 | ![]() ![]() ![]() ![]() ![]() ![]() (5)|![]() ![]() ![]() ![]() ![]() ![]() (6) |![]() ![]() ![]() ![]() ![]() ![]() (9) | [2+[3,3,3]]+ (order 120) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() (−) | |
[3,31,1]![]() ![]() ![]() ![]() ![]() | [3,31,1]![]() ![]() ![]() ![]() ![]() (order 192) | 0 | (none) | |||
[1[3,31,1]]=[4,3,3]![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 384) | (4) | ![]() ![]() ![]() ![]() (12) |![]() ![]() ![]() ![]() (17) |![]() ![]() ![]() ![]() (11) |![]() ![]() ![]() ![]() (16) | ||||
[3[31,1,1]]=[3,4,3]![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 1152) | (3) | ![]() ![]() ![]() ![]() (22) |![]() ![]() ![]() ![]() (23) |![]() ![]() ![]() ![]() (24) | [3[3,31,1]]+ =[3,4,3]+ (order 576) | (1) | ![]() ![]() ![]() ![]() (31) (=![]() ![]() ![]() ![]() ![]() ![]() )![]() ![]() ![]() ![]() ![]() ![]() (−) | |
[4,3,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() | [3[1+,4,3,3]]=[3,4,3]![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 1152) | (3) | ![]() ![]() ![]() ![]() ![]() ![]() (22) |![]() ![]() ![]() ![]() ![]() ![]() (23) |![]() ![]() ![]() ![]() ![]() ![]() (24) | |||
[4,3,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 384) | 12 | ![]() ![]() ![]() ![]() ![]() ![]() (10) |![]() ![]() ![]() ![]() ![]() ![]() (11) |![]() ![]() ![]() ![]() ![]() ![]() (12) |![]() ![]() ![]() ![]() ![]() ![]() (13) |![]() ![]() ![]() ![]() ![]() ![]() (14)![]() ![]() ![]() ![]() ![]() ![]() (15) |![]() ![]() ![]() ![]() ![]() ![]() (16) |![]() ![]() ![]() ![]() ![]() ![]() (17) |![]() ![]() ![]() ![]() ![]() ![]() (18) |![]() ![]() ![]() ![]() ![]() ![]() (19)![]() ![]() ![]() ![]() ![]() ![]() (20) |![]() ![]() ![]() ![]() ![]() ![]() (21) | [1+,4,3,3]+ (order 96) | (2) | ![]() ![]() ![]() ![]() ![]() ![]() (12) (=![]() ![]() ![]() ![]() )![]() ![]() ![]() ![]() ![]() ![]() (31)![]() ![]() ![]() ![]() ![]() ![]() (−) | |
| [4,3,3]+ (order 192) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() (−) | ||||
[3,4,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() | [3,4,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 1152) | 6 | ![]() ![]() ![]() ![]() ![]() ![]() (22) |![]() ![]() ![]() ![]() ![]() ![]() (23) |![]() ![]() ![]() ![]() ![]() ![]() (24)![]() ![]() ![]() ![]() ![]() ![]() (25) |![]() ![]() ![]() ![]() ![]() ![]() (28) |![]() ![]() ![]() ![]() ![]() ![]() (29) | [2+[3+,4,3+]] (order 576) | 1 | ![]() ![]() ![]() ![]() ![]() ![]() (31) |
[2+[3,4,3]]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 2304) | 3 | ![]() ![]() ![]() ![]() ![]() ![]() (26) |![]() ![]() ![]() ![]() ![]() ![]() (27) |![]() ![]() ![]() ![]() ![]() ![]() (30) | [2+[3,4,3]]+ (order 1152) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() (−) | |
[5,3,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() | [5,3,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 14400) | 15 | ![]() ![]() ![]() ![]() ![]() ![]() (32) |![]() ![]() ![]() ![]() ![]() ![]() (33) |![]() ![]() ![]() ![]() ![]() ![]() (34) |![]() ![]() ![]() ![]() ![]() ![]() (35) |![]() ![]() ![]() ![]() ![]() ![]() (36)![]() ![]() ![]() ![]() ![]() ![]() (37) |![]() ![]() ![]() ![]() ![]() ![]() (38) |![]() ![]() ![]() ![]() ![]() ![]() (39) |![]() ![]() ![]() ![]() ![]() ![]() (40) |![]() ![]() ![]() ![]() ![]() ![]() (41)![]() ![]() ![]() ![]() ![]() ![]() (42) |![]() ![]() ![]() ![]() ![]() ![]() (43) |![]() ![]() ![]() ![]() ![]() ![]() (44) |![]() ![]() ![]() ![]() ![]() ![]() (45) |![]() ![]() ![]() ![]() ![]() ![]() (46) | [5,3,3]+ (order 7200) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() (−) |
[3,2,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() | [3,2,3]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 36) | 0 | (none) | [3,2,3]+ (order 18) | 0 | (none) |
[2+[3,2,3]]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 72) | 0 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [2+[3,2,3]]+ (order 36) | 0 | (none) | |
[[3],2,3]=[6,2,3]![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 72) | 1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [1[3,2,3]]=[[3],2,3]+=[6,2,3]+ (order 36) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
[(2+,4)[3,2,3]]=[2+[6,2,6]]![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 288) | 1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [(2+,4)[3,2,3]]+=[2+[6,2,6]]+ (order 144) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
[4,2,4]![]() ![]() ![]() ![]() ![]() ![]() ![]() | [4,2,4]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 64) | 0 | (none) | [4,2,4]+ (order 32) | 0 | (none) |
[2+[4,2,4]]![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 128) | 0 | (none) | [2+[(4,2+,4,2+)]] (order 64) | 0 | (none) | |
[(3,3)[4,2*,4]]=[4,3,3]![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 384) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() (10) | [(3,3)[4,2*,4]]+=[4,3,3]+ (order 192) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() (12) | |
[[4],2,4]=[8,2,4]![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 128) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [1[4,2,4]]=[[4],2,4]+=[8,2,4]+ (order 64) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
[(2+,4)[4,2,4]]=[2+[8,2,8]]![]() ![]() ![]() ![]() ![]() ![]() =![]() ![]() ![]() ![]() ![]() ![]() ![]() (order 512) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [(2+,4)[4,2,4]]+=[2+[8,2,8]]+ (order 256) | (1) | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
Other than the aforementioned infinite duoprism and antiprism prism families, which have infinitely many nonconvex members, many uniform star polychora have been discovered. In 1852, Ludwig Schläfli discovered fourregular star polychora: {5,3,5/2}, {5/2,3,5}, {3,3,5/2}, and {5/2,3,3}. In 1883, Edmund Hess found the other six: {3,5,5/2}, {5/2,5,3}, {5,5/2,5}, {5/2,5,5/2}, {5,5/2,3}, and {3,5/2,5}. Norman Johnson described three uniform antiprism-like star polychora in his doctoral dissertation of 1966: they are based on the threeditrigonal polyhedra sharing the edges and vertices of the regular dodecahedron. Many more have been found since then by other researchers, including Jonathan Bowers and George Olshevsky, creating a total count of 2127 known uniform star polychora at present (not counting the infinite set of duoprisms based on star polygons). There is currently no proof of the set's completeness.