In ten-dimensionalgeometry, a 10-polytope is a 10-dimensionalpolytope whose boundary consists of9-polytopefacets, exactly two such facets meeting at each8-polytoperidge.
Auniform 10-polytope is one which isvertex-transitive, and constructed fromuniformfacets.
Regular 10-polytopes can be represented by theSchläfli symbol {p,q,r,s,t,u,v,w,x}, withx {p,q,r,s,t,u,v,w} 9-polytopefacets around eachpeak.
There are exactly three suchconvex regular 10-polytopes:
There are no nonconvex regular 10-polytopes.
The topology of any given 10-polytope is defined by itsBetti numbers andtorsion coefficients.[1]
The value of theEuler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 10-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[1]
Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.[1]
Uniform 10-polytopes with reflective symmetry can be generated by these three Coxeter groups, represented by permutations of rings of theCoxeter-Dynkin diagrams:
| # | Coxeter group | Coxeter-Dynkin diagram | |
|---|---|---|---|
| 1 | A10 | [39] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 2 | B10 | [4,38] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
| 3 | D10 | [37,1,1] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Selected regular and uniform 10-polytopes from each family include:

















































































































.


















































The A10 family has symmetry of order 39,916,800 (11factorial).
There are 512+16-1=527 forms based on all permutations of theCoxeter-Dynkin diagrams with one or more rings. 31 are shown below: all one and two ringed forms, and the final omnitruncated form. Bowers-style acronym names are given in parentheses for cross-referencing.
| # | Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9-faces | 8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | |||
| 1 |
| 11 | 55 | 165 | 330 | 462 | 462 | 330 | 165 | 55 | 11 | |
| 2 |
| 495 | 55 | |||||||||
| 3 |
| 1980 | 165 | |||||||||
| 4 |
| 4620 | 330 | |||||||||
| 5 |
| 6930 | 462 | |||||||||
| 6 |
| 550 | 110 | |||||||||
| 7 |
| 4455 | 495 | |||||||||
| 8 |
| 2475 | 495 | |||||||||
| 9 |
| 15840 | 1320 | |||||||||
| 10 |
| 17820 | 1980 | |||||||||
| 11 |
| 6600 | 1320 | |||||||||
| 12 |
| 32340 | 2310 | |||||||||
| 13 |
| 55440 | 4620 | |||||||||
| 14 |
| 41580 | 4620 | |||||||||
| 15 |
| 11550 | 2310 | |||||||||
| 16 |
| 41580 | 2772 | |||||||||
| 17 |
| 97020 | 6930 | |||||||||
| 18 |
| 110880 | 9240 | |||||||||
| 19 |
| 62370 | 6930 | |||||||||
| 20 |
| 13860 | 2772 | |||||||||
| 21 |
| 34650 | 2310 | |||||||||
| 22 |
| 103950 | 6930 | |||||||||
| 23 |
| 161700 | 11550 | |||||||||
| 24 |
| 138600 | 11550 | |||||||||
| 25 |
| 18480 | 1320 | |||||||||
| 26 |
| 69300 | 4620 | |||||||||
| 27 |
| 138600 | 9240 | |||||||||
| 28 |
| 5940 | 495 | |||||||||
| 29 |
| 27720 | 1980 | |||||||||
| 30 |
| 990 | 110 | |||||||||
| 31 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1,2,3,4,5,6,7,8,9{3,3,3,3,3,3,3,3,3} Omnitruncated 10-simplex | 199584000 | 39916800 | |||||||||
There are 1023 forms based on all permutations of theCoxeter-Dynkin diagrams with one or more rings.
Twelve cases are shown below: ten single-ring (rectified) forms, and two truncations. Bowers-style acronym names are given in parentheses for cross-referencing.
| # | Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9-faces | 8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | |||
| 1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0{4,3,3,3,3,3,3,3,3} 10-cube (deker) | 20 | 180 | 960 | 3360 | 8064 | 13440 | 15360 | 11520 | 5120 | 1024 | |
| 2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1{4,3,3,3,3,3,3,3,3} Truncated 10-cube (tade) | 51200 | 10240 | |||||||||
| 3 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t1{4,3,3,3,3,3,3,3,3} Rectified 10-cube (rade) | 46080 | 5120 | |||||||||
| 4 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t2{4,3,3,3,3,3,3,3,3} Birectified 10-cube (brade) | 184320 | 11520 | |||||||||
| 5 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t3{4,3,3,3,3,3,3,3,3} Trirectified 10-cube (trade) | 322560 | 15360 | |||||||||
| 6 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t4{4,3,3,3,3,3,3,3,3} Quadrirectified 10-cube (terade) | 322560 | 13440 | |||||||||
| 7 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t4{3,3,3,3,3,3,3,3,4} Quadrirectified 10-orthoplex (terake) | 201600 | 8064 | |||||||||
| 8 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t3{3,3,3,3,3,3,3,4} Trirectified 10-orthoplex (trake) | 80640 | 3360 | |||||||||
| 9 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t2{3,3,3,3,3,3,3,3,4} Birectified 10-orthoplex (brake) | 20160 | 960 | |||||||||
| 10 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t1{3,3,3,3,3,3,3,3,4} Rectified 10-orthoplex (rake) | 2880 | 180 | |||||||||
| 11 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0,1{3,3,3,3,3,3,3,3,4} Truncated 10-orthoplex (take) | 3060 | 360 | |||||||||
| 12 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() t0{3,3,3,3,3,3,3,3,4} 10-orthoplex (ka) | 1024 | 5120 | 11520 | 15360 | 13440 | 8064 | 3360 | 960 | 180 | 20 | |
The D10 family has symmetry of order 1,857,945,600 (10factorial × 29).
This family has 3×256−1=767 Wythoffian uniform polytopes, generated by marking one or more nodes of the D10Coxeter-Dynkin diagram. Of these, 511 (2×256−1) are repeated from the B10 family and 256 are unique to this family, with 2 listed below. Bowers-style acronym names are given in parentheses for cross-referencing.
| # | Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9-faces | 8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | |||
| 1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 10-demicube (hede) | 532 | 5300 | 24000 | 64800 | 115584 | 142464 | 122880 | 61440 | 11520 | 512 | |
| 2 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Truncated 10-demicube (thede) | 195840 | 23040 | |||||||||
There are four fundamental affineCoxeter groups that generate regular and uniform tessellations in 9-space:
| # | Coxeter group | Coxeter-Dynkin diagram | |
|---|---|---|---|
| 1 | [3[10]] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
| 2 | [4,37,4] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
| 3 | h[4,37,4] [4,36,31,1] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
| 4 | q[4,37,4] [31,1,35,31,1] | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
Regular and uniform tessellations include:






































There are no compact hyperbolic Coxeter groups of rank 10, groups that can generate honeycombs with all finite facets, and a finitevertex figure. However, there are3 paracompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 9-space as permutations of rings of the Coxeter diagrams.
= [31,1,34,32,1]:![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | = [4,35,32,1]:![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | or = [36,2,1]:![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Three honeycombs from the family, generated by end-ringed Coxeter diagrams are: