Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ubiquitin ligase

From Wikipedia, the free encyclopedia
Protein
Ubiquitin—protein ligase
E3 ubiquitin ligase Cbl (blue) in complex with E2 (cyan) and substrate peptide (green). PDB entry4a4c[1]
Identifiers
EC no.2.3.2.27
CAS no.74812-49-0
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDBPDBePDBsum
Gene OntologyAmiGO /QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
Protein family
Ubiquitin ligase
Identifiers
SymbolUbiquitin ligase
OPM superfamily471
OPM protein4v6p
Membranome240

Aubiquitin ligase (also called anE3 ubiquitin ligase) is aprotein that recruits an E2ubiquitin-conjugating enzyme that has been loaded withubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin from the E2 to the protein substrate. In simple and more general terms, the ligase enables movement of ubiquitin from a ubiquitin carrier to another protein (the substrate) by some mechanism. Theubiquitin, once it reaches its destination, ends up being attached by anisopeptide bond to alysine residue, which is part of the target protein.[2] E3 ligases interact with both the target protein and the E2 enzyme, and so impart substrate specificity to the E2. Commonly, E3s polyubiquitinate their substrate with Lys48-linked chains of ubiquitin, targeting the substrate for destruction by theproteasome. However, many other types of linkages are possible and alter a protein's activity, interactions, or localization. Ubiquitination by E3 ligases regulates diverse areas such as cell trafficking, DNA repair, and signaling and is of profound importance in cell biology. E3 ligases are also key players in cell cycle control, mediating the degradation ofcyclins, as well ascyclin dependent kinase inhibitor proteins.[3] The human genome encodes over 600 putative E3 ligases, allowing for tremendous diversity in substrates.[4] Certain E3 ligases have been utilized in targeted protein degradation applications.[5]

Ubiquitination system

[edit]
Schematic diagram of the ubiquitylation system.

The ubiquitin ligase is referred to as an E3, and operates in conjunction with anE1 ubiquitin-activating enzyme and anE2 ubiquitin-conjugating enzyme. There is one major E1 enzyme, shared by all ubiquitin ligases, that usesATP to activateubiquitin forconjugation and transfers it to an E2 enzyme. The E2 enzyme interacts with a specific E3 partner and transfers theubiquitin to the targetprotein. The E3, which may be amulti-protein complex, is, in general, responsible for targeting ubiquitination to specificsubstrate proteins.[citation needed]

The ubiquitylation reaction proceeds in three or four steps depending on the mechanism of action of the E3 ubiquitin ligase. In the conserved first step, an E1cysteine residue attacks the ATP-activated C-terminal glycine on ubiquitin, resulting in athioester Ub-S-E1 complex. The energy from ATP and diphosphate hydrolysis drives the formation of this reactive thioester, and subsequent steps are thermoneutral. Next, a transthiolation reaction occurs, in which an E2 cysteine residue attacks and replaces the E1.HECT domain type E3 ligases will have one more transthiolation reaction to transfer the ubiquitin molecule onto the E3, whereas the much more commonRING finger domain type ligases transfer ubiquitin directly from E2 to the substrate.[6] The final step in the first ubiquitylation event is an attack from the target protein lysine amine group, which will remove the cysteine, and form a stable isopeptide bond.[7] One notable exception to this isp21 protein, which appears to be ubiquitylated using its N-terminal amine, thus forming a peptide bond with ubiquitin.[8]

Ubiquitin ligase families

[edit]

Humans have an estimated 500-1000 E3 ligases, which impart substrate specificity onto the E1 and E2.[9] The E3 ligases are classified into four families: HECT, RING-finger, U-box, and PHD-finger.[9] The RING-finger E3 ligases are the largest family and contain ligases such as theanaphase-promoting complex (APC) and theSCF complex (Skp1-Cullin-F-box protein complex). SCF complexes consist of four proteins: Rbx1, Cul1, Skp1, which are invariant among SCF complexes, and an F-box protein, which varies. Around 70 human F-box proteins have been identified.[10] F-box proteins contain an F-box, which binds the rest of the SCF complex, and a substrate binding domain, which gives the E3 its substrate specificity.[9]

Mono- and poly-ubiquitylation

[edit]
Ubiquitin with lysine residues (red), N-terminal methionine (blue), and C-terminal glycine (yellow).[11]

Ubiquitin signaling relies on the diversity of ubiquitin tags for the specificity of its message. A protein can be tagged with a single ubiquitin molecule (monoubiquitylation), or variety of different chains of ubiquitin molecules (polyubiquitylation).[12] E3 ubiquitin ligases catalyze polyubiquitination events much in the same way as the single ubiquitylation mechanism, using instead a lysine residue from a ubiquitin molecule currently attached to substrate protein to attack the C-terminus of a new ubiquitin molecule.[7][12] For example, a common 4-ubiquitin tag, linked through the lysine at position 48 (K48) recruits the tagged protein to the proteasome, and subsequent degradation.[12] However, all seven of the ubiquitin lysine residues (K6, K11, K27, K29, K33, K48, and K63), as well as the N-terminal methionine are used in chains in vivo.[12]

Monoubiquitination has been linked to membrane proteinendocytosis pathways. For example, phosphorylation of the Tyrosine at position 1045 in theEpidermal Growth Factor Receptor (EGFR) can recruit the RING type E3 ligase c-Cbl, via anSH2 domain. C-Cbl monoubiquitylates EGFR, signaling for its internalization and trafficking to the lysosome.[13]

Monoubiquitination also can regulate cytosolic protein localization. For example, the E3 ligaseMDM2 ubiquitylatesp53 either for degradation (K48 polyubiquitin chain), or for nuclear export (monoubiquitylation). These events occur in a concentration dependent fashion, suggesting that modulating E3 ligase concentration is a cellular regulatory strategy for controlling protein homeostasis and localization.[14]

Substrate recognition

[edit]

Ubiquitin ligases are the final, and potentially the most important determinant ofsubstrate specificity inubiquitination ofproteins.[15] The ligases must simultaneously distinguish their protein substrate from thousands of other proteins in thecell, and from other (ubiquitination-inactive) forms of the same protein. This can be achieved by different mechanisms, most of which involve recognition ofdegrons: specific shortamino acid sequences or chemical motifs on the substrate.[16]

N-degrons

[edit]

Proteolytic cleavage can lead to exposure of residues at theN-terminus of a protein. According to theN-end rule, different N-terminal amino acids (or N-degrons) are recognized to a different extent by their appropriate ubiquitin ligase (N-recognin), influencing thehalf-life of the protein.[17] For instance, positively charged (Arg,Lys,His) and bulkyhydrophobic amino acids (Phe,Trp,Tyr,Leu,Ile) are recognized preferentially and thus considered destabilizingdegrons since they allow faster degradation of their proteins.[18]

Phosphodegrons

[edit]
A phosphorylated degron (green) is stabilized by hydrogen bonding (yellow) between oxygen atoms of its phosphate (red) and side chains of the SCFFBW7ubiquitin ligase (blue). The relevant part of the ubiquitin ligase is shown in gray. PDB entry 2ovr[19]

A degron can be converted into its active form by apost-translational modification[20] such asphosphorylation of atyrosine,serine orthreonine residue.[21] In this case, the ubiquitin ligase exclusively recognizes the phosphorylated version of the substrate due to stabilization within thebinding site. For example,FBW7, theF-box substrate recognition unit of anSCFFBW7ubiquitin ligase, stabilizes a phosphorylated substrate byhydrogen binding itsarginine residues to the phosphate, as shown in the figure to the right. In absence of thephosphate, residues of FBW7 repel the substrate.[19]

Oxygen and small molecule dependent degrons

[edit]

The presence ofoxygen or other smallmolecules can influence degron recognition.[19] Thevon Hippel-Lindau (VHL) protein (substrate recognition part of a specific E3 ligase), for instance, recognizes thehypoxia-inducible factor alpha (HIF-α) only under normal oxygen conditions, when itsproline ishydroxylated. Underhypoxia, on the other hand, HIF-a is not hydroxylated, evadesubiquitination and thus operates in the cell at higher concentrations which can initiatetranscriptional response to hypoxia.[22] Another example of small molecule control of protein degradation isphytohormoneauxin in plants.[23] Auxin binds to TIR1 (the substrate recognition domain ofSCFTIR1ubiquitin ligase) increasing the affinity of TIR1 for its substrates (transcriptionalrepressors: Aux/IAA), and promoting their degradation.

Misfolded and sugar degrons

[edit]

In addition to recognizing amino acids, ubiquitin ligases can also detect unusual features on substrates that serve as signals for their destruction.[15] For example, San1 (Sir antagonist 1), anuclear protein quality control inyeast, has a disordered substratebinding domain, which allows it to bind to hydrophobic domains ofmisfolded proteins.[15] Misfolded or excess unassembledglycoproteins of theERAD pathway, on the other hand, are recognized byFbs1 and Fbs2, mammalianF-box proteins of E3 ligasesSCFFbs1and SCFFbs2.[24] These recognition domains have small hydrophobic pockets allowing them to bind high-mannose containingglycans.

Structural motifs

[edit]

In addition to lineardegrons, the E3 ligase can in some cases also recognizestructural motifs on the substrate.[15] In this case, the 3D motif can allow the substrate to directly relate itsbiochemical function toubiquitination. This relation can be demonstrated withTRF1 protein (regulator of humantelomere length), which is recognized by its corresponding E3 ligase (FBXO4) via anintermolecularbeta sheet interaction. TRF1 cannot be ubiquinated while telomere bound, likely because the same TRF1 domain that binds to its E3 ligase also binds to telomeres.[15]

Disease relevance

[edit]

E3 ubiquitin ligases regulate homeostasis, cell cycle, and DNA repair pathways, and as a result, a number of these proteins are involved in a variety of cancers, including famously MDM2,BRCA1, andVon Hippel-Lindau tumor suppressor.[25] For example, a mutation of MDM2 has been found instomach cancer,[26]renal cell carcinoma,[27] andliver cancer[28] (amongst others) to deregulate MDM2 concentrations by increasing its promoter's affinity for theSp1 transcription factor, causing increased transcription of MDM2 mRNA.[26] Several proteomics-based experimental techniques are available for identifying E3 ubiquitin ligase-substrate pairs,[29] such as proximity-dependent biotin identification (BioID), ubiquitin ligase-substrate trapping, and tandem ubiquitin-binding entities (TUBEs).

Examples

[edit]
  • ARING (ReallyInterestingNewGene) domain binds the E2 conjugase and might be found to mediate enzymatic activity in the E2-E3 complex[30]
  • An F-box domain (as in the SCF complex) binds the ubiquitinated substrate. (e.g., Cdc 4, which binds the target proteinSic1; Grr1, which binds Cln).[31]
  • AHECT domain, which is involved in the transfer of ubiquitin from the E2 to the substrate.

Targeted protein degradation

[edit]

In 2001, work from the labs ofCraig Crews andRaymond Deshaies described the development ofproteolysis-targeting chimeras (PROTACs).[32] Using a small molecule to recruit an E3 ubiquitin ligase to a target protein, this work demonstrated that induced proximity could be used to effect the ubiquitination and proteasomal degradation of a target protein. PROTACs have been frequently applied using the E3 ubiquitin ligases CRBN[33][34] and VHL[35][36] to degrade various targets of biological and therapeutic relevance. Multiple groups have sought out additional E3 ligases to co-opt for targeted protein degradation such as FBXO22[37][38][39] and KLHDC2.[40]

While PROTACs generally are heterobifunctional compounds linking an E3 ligase binder to a target protein binder,molecular glues also exist that induceprotein-protein interactions with E3 ligases, leading to degradation of various substrate proteins. Molecular glues often have been discovered through serendipity,[41][42][43] though various methodologies have been explored to expedite the discovery of molecular glues.[44][45][46][47][48][49]

Biologic modalities for targeted protein degradation have also been explored by fusing E3 ligases to target recognition domains such asnanobodies. These modalities are sometimes referred to as bioPROTACs.[50][51] While bioPROTACs are advantageous for targeting proteins lacking small molecule ligands, challenges in delivery, pharmacokinetics, and immunogenicity have so far precluded clinical development.[52] Studies exploring different delivery mechanisms have sought to address these shortcomings.[53] In another variant of this idea, bispecific antibodies to recruit membrane-bound E3 ligases to cell surface proteins (AbTACs) have also been developed.[54]

Individual E3 ubiquitin ligases

[edit]

See also

[edit]

References

[edit]
  1. ^Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT (January 2012)."Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl".Nature Structural & Molecular Biology.19 (2):184–92.doi:10.1038/nsmb.2231.PMC 3880865.PMID 22266821.
  2. ^Hershko A, Ciechanover A (1998). "The ubiquitin system".Annual Review of Biochemistry.67:425–79.doi:10.1146/annurev.biochem.67.1.425.PMID 9759494.
  3. ^Teixeira LK, Reed SI (2013). "Ubiquitin ligases and cell cycle control".Annual Review of Biochemistry.82:387–414.doi:10.1146/annurev-biochem-060410-105307.PMID 23495935.
  4. ^Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA (January 2008)."Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling".PLOS ONE.3 (1) e1487.Bibcode:2008PLoSO...3.1487L.doi:10.1371/journal.pone.0001487.PMC 2198940.PMID 18213395.
  5. ^Békés, Miklós; Langley, David R.; Crews, Craig M. (March 2022)."PROTAC targeted protein degraders: the past is prologue".Nature Reviews Drug Discovery.21 (3):181–200.doi:10.1038/s41573-021-00371-6.ISSN 1474-1784.PMC 8765495.PMID 35042991.
  6. ^Metzger MB, Hristova VA, Weissman AM (February 2012)."HECT and RING finger families of E3 ubiquitin ligases at a glance".Journal of Cell Science.125 (Pt 3):531–7.doi:10.1242/jcs.091777.PMC 3381717.PMID 22389392.
  7. ^abWalsh, Christopher (2006).Posttranslational Modification of Proteins: Expanding Nature's Inventory. Englewood, CO: Roberts.ISBN 978-0-9747077-3-0.[page needed]
  8. ^Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M (October 2003)."Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation".Cell.115 (1):71–82.doi:10.1016/S0092-8674(03)00755-4.PMID 14532004.
  9. ^abcNakayama KI, Nakayama K (May 2006). "Ubiquitin ligases: cell-cycle control and cancer".Nature Reviews. Cancer.6 (5):369–81.doi:10.1038/nrc1881.PMID 16633365.S2CID 19594293.
  10. ^Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW (November 2004)."Systematic analysis and nomenclature of mammalian F-box proteins".Genes & Development.18 (21):2573–80.doi:10.1101/gad.1255304.PMC 525538.PMID 15520277.
  11. ^Vijay-Kumar S, Bugg CE, Cook WJ (April 1987). "Structure of ubiquitin refined at 1.8 A resolution".Journal of Molecular Biology.194 (3):531–44.doi:10.1016/0022-2836(87)90679-6.PMID 3041007.
  12. ^abcdBehrends C, Harper JW (May 2011). "Constructing and decoding unconventional ubiquitin chains".Nature Structural & Molecular Biology.18 (5):520–8.doi:10.1038/nsmb.2066.PMID 21540891.S2CID 19237120.
  13. ^Bonifacino JS, Traub LM (2003). "Signals for sorting of transmembrane proteins to endosomes and lysosomes".Annual Review of Biochemistry.72:395–447.doi:10.1146/annurev.biochem.72.121801.161800.PMID 12651740.
  14. ^Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (December 2003). "Mono- versus polyubiquitination: differential control of p53 fate by Mdm2".Science.302 (5652):1972–5.Bibcode:2003Sci...302.1972L.doi:10.1126/science.1091362.PMID 14671306.S2CID 43124248.
  15. ^abcdeZheng N, Shabek N (June 2017). "Ubiquitin Ligases: Structure, Function, and Regulation".Annual Review of Biochemistry.86 (1):129–157.doi:10.1146/annurev-biochem-060815-014922.PMID 28375744.
  16. ^Ravid T, Hochstrasser M (September 2008)."Diversity of degradation signals in the ubiquitin-proteasome system".Nature Reviews Molecular Cell Biology.9 (9):679–90.doi:10.1038/nrm2468.PMC 2606094.PMID 18698327.
  17. ^Sriram SM, Kim BY, Kwon YT (October 2011). "The N-end rule pathway: emerging functions and molecular principles of substrate recognition".Nature Reviews Molecular Cell Biology.12 (11):735–47.doi:10.1038/nrm3217.PMID 22016057.S2CID 10555455.
  18. ^Tasaki T, Sriram SM, Park KS, Kwon YT (2012)."The N-end rule pathway".Annual Review of Biochemistry.81:261–89.doi:10.1146/annurev-biochem-051710-093308.PMC 3610525.PMID 22524314.
  19. ^abcLucas X, Ciulli A (June 2017)."Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies"(PDF).Current Opinion in Structural Biology.44:101–110.doi:10.1016/j.sbi.2016.12.015.PMID 28130986.
  20. ^Herhaus L, Dikic I (September 2015)."Expanding the ubiquitin code through post-translational modification".EMBO Reports.16 (9):1071–83.doi:10.15252/embr.201540891.PMC 4576978.PMID 26268526.
  21. ^Reinhardt HC, Yaffe MB (September 2013). "Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response".Nature Reviews Molecular Cell Biology.14 (9):563–80.doi:10.1038/nrm3640.PMID 23969844.S2CID 149598.
  22. ^Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (April 2001)."Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation".Science.292 (5516):468–72.Bibcode:2001Sci...292..468J.doi:10.1126/science.1059796.PMID 11292861.S2CID 20914281.
  23. ^Shabek N, Zheng N (April 2014). "Plant ubiquitin ligases as signaling hubs".Nature Structural & Molecular Biology.21 (4):293–6.doi:10.1038/nsmb.2804.PMID 24699076.S2CID 41227590.
  24. ^Yoshida Y, Mizushima T, Tanaka K (2019-02-19)."Sugar-Recognizing Ubiquitin Ligases: Action Mechanisms and Physiology".Frontiers in Physiology.10 104.doi:10.3389/fphys.2019.00104.PMC 6389600.PMID 30837888.
  25. ^Lipkowitz S, Weissman AM (August 2011)."RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis".Nature Reviews. Cancer.11 (9):629–43.doi:10.1038/nrc3120.PMC 3542975.PMID 21863050.
  26. ^abHou YC, Deng JY (January 2015)."Role of E3 ubiquitin ligases in gastric cancer".World Journal of Gastroenterology.21 (3):786–93.doi:10.3748/wjg.v21.i3.786.PMC 4299330.PMID 25624711.
  27. ^de Martino M, Taus C, Wessely IS, Lucca I, Hofbauer SL, Haitel A, Shariat SF, Klatte T (February 2015). "The T309G murine double minute 2 gene polymorphism is an independent prognostic factor for patients with renal cell carcinoma".DNA and Cell Biology.34 (2):107–12.doi:10.1089/dna.2014.2653.PMID 25415135.
  28. ^Tang T, Song X, Yang Z, Huang L, Wang W, Tan H (November 2014). "Association between murine double minute 2 T309G polymorphism and risk of liver cancer".Tumour Biology.35 (11):11353–7.doi:10.1007/s13277-014-2432-9.PMID 25119589.S2CID 16385927.
  29. ^Rayner SL, Morsch M, Molloy MP, Shi B, Chung R, Lee A (July 2019)."Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases".Cellular and Molecular Life Sciences.76 (13):2499–2510.doi:10.1007/s00018-019-03082-9.PMC 11105231.PMID 30919022.S2CID 85527795.
  30. ^Ardley HC, Robinson PA (2005). "E3 ubiquitin ligases".Essays in Biochemistry.41:15–30.doi:10.1042/EB0410015.PMID 16250895.
  31. ^Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (July 1996)."SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box".Cell.86 (2):263–74.doi:10.1016/S0092-8674(00)80098-7.PMID 8706131.
  32. ^Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.; Deshaies, R. J. (2001-07-17)."Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation".Proceedings of the National Academy of Sciences of the United States of America.98 (15):8554–8559.Bibcode:2001PNAS...98.8554S.doi:10.1073/pnas.141230798.ISSN 0027-8424.PMC 37474.PMID 11438690.
  33. ^Lu, Jing; Qian, Yimin; Altieri, Martha; Dong, Hanqing; Wang, Jing; Raina, Kanak; Hines, John; Winkler, James D.; Crew, Andrew P.; Coleman, Kevin; Crews, Craig M. (2015-06-18)."Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4".Chemistry & Biology.22 (6):755–763.doi:10.1016/j.chembiol.2015.05.009.ISSN 1879-1301.PMC 4475452.PMID 26051217.
  34. ^Winter, Georg E.; Buckley, Dennis L.; Paulk, Joshiawa; Roberts, Justin M.; Souza, Amanda; Dhe-Paganon, Sirano; Bradner, James E. (2015-06-19)."Phthalimide conjugation as a strategy for in vivo target protein degradation".Science.348 (6241):1376–1381.Bibcode:2015Sci...348.1376W.doi:10.1126/science.aab1433.ISSN 0036-8075.PMC 4937790.PMID 25999370.
  35. ^Bondeson, Daniel P.; Mares, Alina; Smith, Ian E. D.; Ko, Eunhwa; Campos, Sebastien; Miah, Afjal H.; Mulholland, Katie E.; Routly, Natasha; Buckley, Dennis L.; Gustafson, Jeffrey L.; Zinn, Nico; Grandi, Paola; Shimamura, Satoko; Bergamini, Giovanna; Faelth-Savitski, Maria (August 2015)."Catalytic in vivo protein knockdown by small-molecule PROTACs".Nature Chemical Biology.11 (8):611–617.doi:10.1038/nchembio.1858.ISSN 1552-4469.PMC 4629852.PMID 26075522.
  36. ^Zengerle, Michael; Chan, Kwok-Ho; Ciulli, Alessio (2015-08-21)."Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4".ACS Chemical Biology.10 (8):1770–1777.doi:10.1021/acschembio.5b00216.ISSN 1554-8929.PMC 4548256.PMID 26035625.
  37. ^Nie, David Y.; Tabor, John R.; Li, Jianping; Kutera, Maria; St-Germain, Jonathan; Hanley, Ronan P.; Wolf, Esther; Paulakonis, Ethan; Kenney, Tristan M. G.; Duan, Shili; Shrestha, Suman; Owens, Dominic D. G.; Maitland, Matthew E. R.; Pon, Ailing; Szewczyk, Magdalena (December 2024). "Recruitment of FBXO22 for targeted degradation of NSD2".Nature Chemical Biology.20 (12):1597–1607.doi:10.1038/s41589-024-01660-y.ISSN 1552-4469.PMC 11581931.PMID 38965384.
  38. ^Basu, Ananya A.; Zhang, Chenlu; Riha, Isabella A.; Magassa, Assa; Campos, Miguel A.; Caldwell, Alana G.; Ko, Felicia; Zhang, Xiaoyu (December 2024)."A CRISPR activation screen identifies FBXO22 supporting targeted protein degradation".Nature Chemical Biology.20 (12):1608–1616.doi:10.1038/s41589-024-01655-9.ISSN 1552-4469.PMC 11581908.PMID 38965383.
  39. ^Kagiou, Chrysanthi; Cisneros, Jose A.; Farnung, Jakob; Liwocha, Joanna; Offensperger, Fabian; Dong, Kevin; Yang, Ka; Tin, Gary; Horstmann, Christina S.; Hinterndorfer, Matthias; Paulo, Joao A.; Scholes, Natalie S.; Sanchez Avila, Juan; Fellner, Michaela; Andersch, Florian (2024-06-26)."Alkylamine-tethered molecules recruit FBXO22 for targeted protein degradation".Nature Communications.15 (1): 5409.Bibcode:2024NatCo..15.5409K.doi:10.1038/s41467-024-49739-3.ISSN 2041-1723.PMC 11208438.PMID 38926334.
  40. ^Scott, Daniel C.; Dharuman, Suresh; Griffith, Elizabeth; Chai, Sergio C.; Ronnebaum, Jarrid; King, Moeko T.; Tangallapally, Rajendra; Lee, Chan; Gee, Clifford T.; Yang, Lei; Li, Yong; Loudon, Victoria C.; Lee, Ha Won; Ochoada, Jason; Miller, Darcie J. (2024-10-12)."Principles of paralog-specific targeted protein degradation engaging the C-degron E3 KLHDC2".Nature Communications.15 (1): 8829.Bibcode:2024NatCo..15.8829S.doi:10.1038/s41467-024-52966-3.ISSN 2041-1723.PMC 11470957.PMID 39396041.
  41. ^Ito, Takumi; Ando, Hideki; Suzuki, Takayuki; Ogura, Toshihiko; Hotta, Kentaro; Imamura, Yoshimasa; Yamaguchi, Yuki; Handa, Hiroshi (2010-03-12)."Identification of a Primary Target of Thalidomide Teratogenicity".Science.327 (5971):1345–1350.Bibcode:2010Sci...327.1345I.doi:10.1126/science.1177319.PMID 20223979.
  42. ^Choi, J.; Chen, J.; Schreiber, S. L.; Clardy, J. (1996-07-12). "Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP".Science.273 (5272):239–242.Bibcode:1996Sci...273..239C.doi:10.1126/science.273.5272.239.ISSN 0036-8075.PMID 8662507.
  43. ^Liu, Jun; Farmer, Jesse D.; Lane, Willam S.; Friedman, Jeff; Weissman, Irving; Schreiber, Stuart L. (1991-08-23)."Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes".Cell.66 (4):807–815.doi:10.1016/0092-8674(91)90124-H.ISSN 0092-8674.PMID 1715244.
  44. ^Bushman, Jonathan W.; Deng, Weixian; Samarasinghe, Kusal T. G.; Liu, Han-Yuan; Li, Shiqian; Vaish, Amit; Golkar, Alex; Ou, Shu-Ching; Ahn, Jinwoo (2025-03-19),Discovery of a VHL molecular glue degrader of GEMIN3 by Picowell RNA-seq, bioRxiv,doi:10.1101/2025.03.19.644003, retrieved2025-04-07
  45. ^Razumkov, Hlib; Jiang, Zixuan; Baek, Kheewoong; You, Inchul; Geng, Qixiang; Donovan, Katherine A.; Tang, Michelle T.; Metivier, Rebecca J.; Mageed, Nada; Seo, Pooreum; Li, Zhengnian; Byun, Woong Sub; Hinshaw, Stephen M.; Sarott, Roman C.; Fischer, Eric S. (2024-11-20)."Discovery of CRBN-Dependent WEE1 Molecular Glue Degraders from a Multicomponent Combinatorial Library".Journal of the American Chemical Society.146 (46):31433–31443.Bibcode:2024JAChS.14631433R.doi:10.1021/jacs.4c06127.ISSN 0002-7863.PMC 11800961.PMID 39499896.
  46. ^Zhuang, Zhe; Byun, Woong Sub; Chrustowicz, Jakub; Kozicka, Zuzanna; Li, Veronica L.; Abeja, Dinah M.; Donovan, Katherine A.; Sepic, Sara; You, Inchul (2024-09-26),Charged Molecular Glue Discovery Enabled by Targeted Degron Display, bioRxiv,doi:10.1101/2024.09.24.614843, retrieved2025-04-07
  47. ^Wang, Zefeng; Shaabani, Shabnam; Gao, Xiang; Ng, Yuen Lam Dora; Sapozhnikova, Valeriia; Mertins, Philipp; Krönke, Jan; Dömling, Alexander (2023-12-19)."Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery".Nature Communications.14 (1): 8437.Bibcode:2023NatCo..14.8437W.doi:10.1038/s41467-023-43614-3.ISSN 2041-1723.PMC 10730884.PMID 38114468.
  48. ^Toriki, Ethan S.; Papatzimas, James W.; Nishikawa, Kaila; Dovala, Dustin; Frank, Andreas O.; Hesse, Matthew J.; Dankova, Daniela; Song, Jae-Geun; Bruce-Smythe, Megan; Struble, Heidi; Garcia, Francisco J.; Brittain, Scott M.; Kile, Andrew C.; McGregor, Lynn M.; McKenna, Jeffrey M. (2023-05-24)."Rational Chemical Design of Molecular Glue Degraders".ACS Central Science.9 (5):915–926.doi:10.1021/acscentsci.2c01317.ISSN 2374-7943.PMC 10214506.PMID 37252349.
  49. ^Baek, Kheewoong; Metivier, Rebecca J.; Roy Burman, Shourya S.; Bushman, Jonathan W.; Yoon, Hojong; Lumpkin, Ryan J.; Abeja, Dinah M.; Lakshminarayan, Megha; Yue, Hong; Ojeda, Samuel; Verano, Alyssa L.; Gray, Nathanael S.; Donovan, Katherine A.; Fischer, Eric S. (2024-10-04)."Unveiling the hidden interactome of CRBN molecular glues with chemoproteomics".BioRxiv: The Preprint Server for Biology 2024.09.11.612438.doi:10.1101/2024.09.11.612438.ISSN 2692-8205.PMC 11419069.PMID 39314457.
  50. ^Lim, Shuhui; Khoo, Regina; Peh, Khong Ming; Teo, Jinkai; Chang, Shih Chieh; Ng, Simon; Beilhartz, Greg L.; Melnyk, Roman A.; Johannes, Charles W.; Brown, Christopher J.; Lane, David P.; Henry, Brian; Partridge, Anthony W. (2020-03-17)."bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA)".Proceedings of the National Academy of Sciences.117 (11):5791–5800.Bibcode:2020PNAS..117.5791L.doi:10.1073/pnas.1920251117.PMC 7084165.PMID 32123106.
  51. ^Fletcher, Alice; Clift, Dean; de Vries, Emma; Martinez Cuesta, Sergio; Malcolm, Timothy; Meghini, Francesco; Chaerkady, Raghothama; Wang, Junmin; Chiang, Abby; Weng, Shao Huan Samuel; Tart, Jonathan; Wong, Edmond; Donohoe, Gerard; Rawlins, Philip; Gordon, Euan (2023-11-04)."A TRIM21-based bioPROTAC highlights the therapeutic benefit of HuR degradation".Nature Communications.14 (1): 7093.Bibcode:2023NatCo..14.7093F.doi:10.1038/s41467-023-42546-2.ISSN 2041-1723.PMC 10625600.PMID 37925433.
  52. ^Ou, Lisha; Setegne, Mekedlawit T.; Elliot, Jeandele; Shen, Fangfang; Dassama, Laura M. K. (2025-02-26). "Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics".Chemical Reviews.125 (4):2120–2183.doi:10.1021/acs.chemrev.4c00595.ISSN 1520-6890.PMC 11870016.PMID 39818743.
  53. ^Chan, Alexander; Haley, Rebecca M.; Najar, Mohd Altaf; Gonzalez-Martinez, David; Bugaj, Lukasz J.; Burslem, George M.; Mitchell, Michael J.; Tsourkas, Andrew (2024-07-10)."Lipid-mediated intracellular delivery of recombinant bioPROTACs for the rapid degradation of undruggable proteins".Nature Communications.15 (1): 5808.Bibcode:2024NatCo..15.5808C.doi:10.1038/s41467-024-50235-x.ISSN 2041-1723.PMC 11237011.PMID 38987546.
  54. ^Cotton, Adam D.; Nguyen, Duy P.; Gramespacher, Josef A.; Seiple, Ian B.; Wells, James A. (2021-01-20)."Development of Antibody-Based PROTACs for the Degradation of the Cell-Surface Immune Checkpoint Protein PD-L1".Journal of the American Chemical Society.143 (2):593–598.Bibcode:2021JAChS.143..593C.doi:10.1021/jacs.0c10008.ISSN 0002-7863.PMC 8154509.PMID 33395526.

External links

[edit]
Chaperones/
protein folding
Heat shock proteins/
Chaperonins
Other
Protein targeting
Ubiquitin
(ubiquitylation)
Ubiquitin-like proteins
(UBL)
SUMO protein
(SUMOylation)
  • E2 SUMO-conjugating enzyme
Other
Enzymes: CO CS and CNligases (EC 6.1-6.3)
6.1: Carbon-Oxygen
6.2: Carbon-Sulfur
6.3: Carbon-Nitrogen
Activity
Regulation
Classification
Kinetics
Types
Portal:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ubiquitin_ligase&oldid=1314596146"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp