Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Tungsten hexafluoride

From Wikipedia, the free encyclopedia
Tungsten hexafluoride
Solid WF6 melting into liquid WF6
Tungsten(VI) fluoride
Tungsten(VI) fluoride
Ball-and-stick model of tungsten hexafluoride
Ball-and-stick model of tungsten hexafluoride
Names
IUPAC name
  • Tungsten hexafluoride
  • Tungsten(VI) fluoride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.029.117Edit this at Wikidata
EC Number
  • 232-029-1
UNII
UN number2196
  • InChI=1S/6FH.W/h6*1H;/q;;;;;;+6/p-6
  • F[W](F)(F)(F)(F)F
Properties
WF6
Molar mass297.830 g/mol
AppearanceColorless gas
Density12.4 g/L (gas)
4.56 g/cm3 (−9 °C, solid)
Melting point2.3 °C (36.1 °F; 275.4 K)
Boiling point17.1 °C (62.8 °F; 290.2 K)
Hydrolyzes
−40.0·10−6 cm3/mol
Structure
Octahedral
zero
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic, corrosive; gives HF on contact with water
GHS labelling:[1]
GHS05: CorrosiveGHS06: Toxic
Danger
H301+H311,H314,H330
P260,P264,P264+P265,P270,P271,P280,P284,P301+P316,P301+P330+P331,P302+P352,P302+P361+P354,P304+P340,P305+P354+P338,P316,P317,P320,P321,P330,P361+P364,P363,P403+P233,P405,P410+P403,P501
NFPA 704 (fire diamond)
Flash pointNon-flammable
Safety data sheet (SDS)ChemAdvisor
Related compounds
Otheranions
Othercations
Related compounds
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Tungsten(VI) fluoride, also known astungsten hexafluoride, is aninorganic compound with theformulaWF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd) (roughly 11 times heavier than air).[2][3] It is the densest known gas understandard ambient temperature and pressure (298 K, 1 atm) and the only well-characterized gas under these conditions that contains a transition metal.[4][5]WF6 is commonly used by thesemiconductor industry to form tungsten films, through the process ofchemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect".[6] It is one of seventeen known binaryhexafluorides.

Properties

[edit]

TheWF6 molecule is octahedral with thesymmetry point group of Oh. The W–F bond distances are183.2 pm.[7] Between2.3 and 17 °C, tungsten hexafluoride condenses into a colorless liquid having the density of3.44 g/cm3 at15 °C.[8] At2.3 °C it freezes into a white solid having a cubic crystalline structure, a lattice constant of628 pm, and calculated density3.99 g/cm3. At−9 °C, this structure transforms into anorthorhombic solid with the lattice constants ofa =960.3 pm,b =871.3 pm, andc =504.4 pm, and a density of4.56 g/cm3. In this phase, the W–F distance is181 pm, and the mean closest molecular contacts are312 pm. WhereasWF6 gas is one of the densest gases, with a density exceeding that of the heaviest elemental gasradon (9.73 g/L), the density ofWF6 in the liquid and solid state is rather moderate.[9] The vapor pressure ofWF6 between−70 and 17 °Ccan be described by the equation

log10P = 4.55569 −1021.208/T + 208.45,

where theP = vapor pressure (bar),T = temperature (°C).[10][11]

History and synthesis

[edit]

Tungsten hexafluoride was first obtained by conversion oftungsten hexachloride withhydrogen fluoride byOtto Ruff and Fritz Eisner in 1905:[12][13]

WCl6 + 6 HF → WF6 + 6HCl

The compound is now commonly produced by theexothermic reaction offluorine gas withtungsten powder at a temperature between350 and 400 °C:[8]

W + 3 F2 → WF6

The gaseous product is separated fromWOF4, a common impurity, by distillation. In a variation on the direct fluorination, the metal is placed in a heated reactor, slightly pressurized to 1.2 to 2.0 psi (8.3 to 13.8 kPa), with a constant flow ofWF6 infused with a small amount offluorine gas.[14]

The fluorine gas in the above method can be substituted byClF,ClF3, orBrF3. An alternative procedure for producing tungsten fluoride is to treattungsten trioxide (WO3) withHF,BrF3, orSF4. And besides HF, other fluorinating agents can also be used to convert tungsten hexachloride in a way similar to Ruff and Eisner's original method:[4]

WCl6 + 2AsF3 → WF6 + 2AsCl3 or
WCl6 + 3SbF5 → WF6 + 3 SbF3Cl2

Reactions

[edit]

On contact withwater, tungsten hexafluoride giveshydrogen fluoride (HF) and tungsten oxyfluorides, eventually formingtungsten trioxide:[4]

WF6 + 3 H2O → WO3 + 6 HF

Unlike some other metal fluorides,WF6 is not a useful fluorinating agent, nor is it a powerful oxidant. It can be reduced to the yellowWF4.[15]

WF6 forms a variety of 1:1 and 1:2adducts withLewis bases, examples beingWF6(S(CH3)2), WF6(S(CH3)2)2, WF6(P(CH3)3), and WF6(py)2.[16]

Applications in the semiconductor industry

[edit]

The dominant application of tungsten fluoride is in the semiconductor industry, where it is widely used for depositing tungsten metal in achemical vapor deposition (CVD) process. The expansion of the industry in the 1980s and 1990s resulted in an increase inWF6 consumption, which remains at around 200 tonnes per year worldwide. Tungsten metal is attractive because of its relatively high thermal and chemical stability, as well as low resistivity (5.6 μΩ·cm) and very lowelectromigration.WF6 is favored over related compounds, such asWCl6 orWBr6, because of its higher vapor pressure resulting in higher deposition rates. Since 1967, twoWF6 deposition routes have been developed and employed: thermal decomposition and hydrogen reduction.[17] The requiredWF6 gas purity is rather high and varies between 99.98% and 99.9995% depending on the application.[4]

WF6 molecules have to be split up in the CVD process. The decomposition is usually facilitated by mixingWF6 with hydrogen,silane,germane,diborane,phosphine, and related hydrogen-containing gases.

Silicon

[edit]

WF6 reacts upon contact with asilicon substrate.[4] TheWF6 decomposition on silicon is temperature-dependent:

2 WF6 + 3 Si → 2 W + 3SiF4 below 400 °C and
WF6 + 3 Si → W + 3 SiF2 above 400 °C.

This dependence is crucial, as twice as much silicon is consumed at higher temperatures. The deposition occurs selectively on pure silicon only, but not onsilicon dioxide orsilicon nitride; thus, the reaction is highly sensitive to contamination or substrate pre-treatment. The decomposition reaction is fast, but saturates when the tungsten layer thickness reaches 10–15micrometers. The saturation occurs because the tungsten layer stops diffusion ofWF6 molecules to the Si substrate, which is the only catalyst of molecular decomposition in this process.[4]

If the deposition occurs not in an inert atmosphere but in an oxygen-containing atmosphere (air), then instead of tungsten, a tungsten oxide layer is produced.[18]

Hydrogen

[edit]

The deposition process occurs at temperatures between 300 and 800 °C and results in formation ofhydrogen fluoride vapors:

WF6 + 3 H2 → W + 6 HF

The crystallinity of the produced tungsten layers can be controlled by altering theWF6/H2 ratio and the substrate temperature: low ratios and temperatures result in(100)-oriented tungsten crystallites, whereas higher values favor the (111) orientation. Formation of HF is a drawback, as HF vapor is very aggressive and etches away most materials. Also, the deposited tungsten shows poor adhesion to thesilicon dioxide which is the main passivation material in semiconductor electronics. Therefore,SiO2 has to be covered with an extra buffer layer prior to the tungsten deposition. On the other hand, etching by HF may be beneficial to remove unwanted impurity layers.[4]

Silane and germane

[edit]

The characteristic features of tungsten deposition fromWF6/SiH4 are high speed, good adhesion, and layer smoothness. The drawbacks are explosion hazard and high sensitivity of the deposition rate and morphology to the process parameters, such as mixing ratio, substrate temperature, etc. Therefore, silane is commonly used to create a thin tungsten nucleation layer. It is then switched to hydrogen, which slows down the deposition and cleans up the layer.[4]

Deposition from aWF6/GeH4 mixture is similar to that ofWF6/SiH4, but the tungsten layer becomes contaminated with relatively (compared to Si) heavy germanium up to concentrations of 10–15%. This increases tungstenresistivity from about 5 to200 μΩ·cm.[4]

Other applications

[edit]

WF6 can be used for the production oftungsten carbide.

As a heavy gas,WF6 can be used as a buffer to control gas reactions. For example, it slows down the chemistry of theAr/O2/H2 flame and reduces the flame temperature.[19]

Safety

[edit]

Tungsten hexafluoride is an extremely corrosive compound that attacks any tissue. Because of the formation ofhydrofluoric acid upon reaction ofWF6 with humidity,WF6 storage vessels haveTeflon gaskets.[20]

References

[edit]
  1. ^"Tungsten hexafluoride".pubchem.ncbi.nlm.nih.gov.
  2. ^Roucan, J.-P.; Noël-Dutriaux, M.-C.Proprietes Physiques des Composes Mineraux. Ed. Techniques Ingénieur. p. 138.
  3. ^Gas chart (Wayback Machine archive 7 September 2022)
  4. ^abcdefghiLassner, E.; Schubert, W.-D. (1999).Tungsten - Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. Springer. pp. 111, 168.ISBN 0-306-45053-4.
  5. ^See the English Wikipedialist of gases for a comprehensive list of all compounds with measured boiling points at or below 298 K at 1 atm.
  6. ^"Tungsten and Tungsten Silicide Chemical Vapor Deposition".CVD Fundamentals. TimeDomain CVD.
  7. ^Lide, D. R., ed. (2005).CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press.ISBN 0-8493-0486-5. p. 4-93.
  8. ^abPriest, H. F.; Swinehert, C. F. (1950). "Anhydrous Metal Fluorides". In Audrieth, L. F. (ed.).Inorganic Syntheses. Vol. 3. Wiley-Interscience. pp. 171–183.doi:10.1002/9780470132340.ch47.ISBN 978-0-470-13162-6.{{cite book}}:ISBN / Date incompatibility (help)
  9. ^Levy, J. (1975). "The structures of fluorides XIII: The orthorhombic form of tungsten hexafluoride at 193 K by neutron diffraction".Journal of Solid State Chemistry.15 (4):360–365.Bibcode:1975JSSCh..15..360L.doi:10.1016/0022-4596(75)90292-3.
  10. ^Cady, G.H.; Hargreaves, G.B, "Vapour Pressures of Some Fluorides And Oxyfluorides of Molybdenum, Tungsten, Rhenium, and Osmium," Journal of the Chemical Society, APR 1961, pp. 1568-& DOI: 10.1039/jr9610001568
  11. ^Stull, Daniel R. (1947)."Vapor Pressure of Pure Substances. Organic and Inorganic Compounds".Industrial & Engineering Chemistry.39 (4):517–540.doi:10.1021/ie50448a022.
  12. ^Otto Ruff; Fritz Eisner (January 1905)."Ueber das Wolfram-hexafluorid"(PDF).Berichte der Deutschen Chemischen Gesellschaft.38 (1):742–747.doi:10.1002/CBER.190503801120.ISSN 0365-9496.Wikidata Q56639371.
  13. ^Ruff, Otto; Eisner, Fritz; Heller, Wilhelm (1907)."Über die Darstellung und Eigenschaften von Fluoriden des sechswertigen Wolframs".Zeitschrift für anorganische Chemie (in German).52 (1):256–269.doi:10.1002/zaac.19070520122.ISSN 1521-3749.
  14. ^US patent 6544889, "Method for tungsten chemical vapor deposition on a semiconductor substrate", issued 2003-04-08 
  15. ^Greenwood, N. N.; Earnshaw, A. (1997).Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann.ISBN 0-7506-3365-4.
  16. ^Benjamin, Sophie L.; Levason, William; Reid, Gillian (2013). "Medium and high oxidation state metal/Non-metal fluoride and oxide–fluoride complexes with neutral donor ligands".Chem. Soc. Rev.42 (4):1460–1499.doi:10.1039/C2CS35263J.PMID 23014811.
  17. ^Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R.; Cuer, J.-P. (2005). "Fluorine Compounds, Inorganic". In Ullmann (ed.).Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  18. ^Kirss, R. U.; Meda, L. (1998)."Chemical vapor deposition of tungsten oxide"(PDF).Applied Organometallic Chemistry.12 (3):155–160.doi:10.1002/(SICI)1099-0739(199803)12:3<155::AID-AOC688>3.0.CO;2-Z.hdl:2027.42/38321.
  19. ^Ifeacho, P. (2008).Semi-conducting metal oxide nanoparticles from a low-pressure premixed H2/O2/Ar flame: Synthesis and Characterization. Göttingen: Cuvillier Verlag. p. 64.ISBN 978-3-86727-816-4.
  20. ^"Tungsten hexafluoride MSDS"(PDF). Linde Gas. Archived fromthe original(PDF) on 2010-02-12.
Known binary hexafluorides
Chalcogen binary hexafluorides
Noble gas binary hexafluorides
Transition metal binary hexafluorides
Actinide binary hexafluorides
Predicted binary hexafluorides
Noble gas binary hexafluorides
Transition metal binary hexafluorides
Actinide binary hexafluorides
Tungsten(0)
Tungsten(II)
Tungsten(III)
Tungsten(IV)
Tungsten(V)
Tungsten(V,VI)
Tungsten(VI)
Organotungsten(VI) compounds
Polytungstate salts
Salts and covalent derivatives of thefluoride ion
HF?HeF2
LiFBeF2BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
+N
+NO3
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2Ne
NaFMgF2AlF
AlF3
SiF4P2F4
PF3
PF5
+PO4
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KFCaF
CaF2
ScF3TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbFSrF
SrF2
YF3ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsFBaF2 LuF3HfF4TaF5WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrFRaF2 LrF3RfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaF3CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3SmF
SmF2
SmF3
EuF2
EuF3
GdF3TbF3
TbF4
DyF2
DyF3
DyF4
HoF3ErF3TmF2
TmF3
YbF2
YbF3
AcF3ThF2
ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
FmMdF3No
Retrieved from "https://en.wikipedia.org/w/index.php?title=Tungsten_hexafluoride&oldid=1298807968"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp