Космическая программа СССР Kosmicheskaya programma SSSR | |
Launch of the first successful artificial satellite,Sputnik-1, fromR-7 platform in 1957 | |
Formed | 1951 |
---|---|
Dissolved | November 14, 1991[1] |
Manager |
|
Key people | Design Bureaus |
Primary spaceport | |
First flight | Sputnik 1 (October 4, 1957) |
First crewed flight | Vostok 1 (April 12, 1961) |
Last crewed flight | Soyuz TM-13 (October 2, 1991) |
Successes | See accomplishments |
Failures | See failures below |
Partial failures | See partial or cancelled projects Soviet lunar program |
Part ofa series of articles on the |
Soviet space program |
---|
TheSoviet space program[2] (Russian:Космическая программа СССР,romanized: Kosmicheskaya programma SSSR) was the statespace program of theSoviet Union, active from 1951 until thedissolution of the Soviet Union in 1991.[3][4][5] Contrary to itsAmerican,European, andChinese competitors, which had their programs run under single coordinating agencies, the Soviet space program was divided between several internally competingdesign bureaus led byKorolev,Kerimov,Keldysh,Yangel,Glushko,Chelomey,Makeyev,Chertok andReshetnev.[6] Several of these bureaus were subordinated to theMinistry of General Machine-Building. The Soviet space program served as an important marker of claims by the Soviet Union to itssuperpower status.[7]: 1
Soviet investigations into rocketry began with the formation of theGas Dynamics Laboratory in 1921, and these endeavors expanded during the 1930s and 1940s.[8][9] In the years followingWorld War II, both the Soviet andUnited States space programs utilised German technology in their early efforts at space programs. In the 1950s, the Soviet program was formalized under the management ofSergei Korolev, who led the program based on unique concepts derived fromKonstantin Tsiolkovsky, sometimes known as the father of theoreticalastronautics.[10]
Competing in theSpace Racewith the United States and laterwith the European Union andwith China, the Soviet space program was notable in setting many records in space exploration, including the first intercontinental missile (R-7 Semyorka) that launched the first satellite (Sputnik 1) and sent the first animal (Laika) intoEarth orbit in 1957, and placed the first human in space in 1961,Yuri Gagarin. In addition, the Soviet program also saw the first woman in space,Valentina Tereshkova, in 1963 and thefirst spacewalk in 1965. Other milestones includedcomputerized robotic missionsexploring the Moon starting in 1959: being the first toreach the surface of the Moon, recording the first image of thefar side of the Moon, and achieving the first soft landing on the Moon. The Soviet program also achieved the first space rover deployment with theLunokhod programme in 1966, and sent the first robotic probe that automatically extracted a sample oflunar soil and brought it to Earth in 1970,Luna 16.[11][12] The Soviet program was also responsible for leading the firstinterplanetary probes toVenus andMars and made successful soft landings on these planets in the 1960s and 1970s.[13] It put the firstspace station,Salyut 1, intolow Earth orbit in 1971, and the first modular space station,Mir, in 1986.[14] ItsInterkosmos program was also notable for sending the first citizen of a country other than the United States or Soviet Union into space.[15][16]
The primary spaceport,Baikonur Cosmodrome, is now inKazakhstan, which leases the facility to Russia.[17][18]
The theory ofspace exploration had a solid basis in theRussian Empire before theFirst World War with the writings of the Russian and Soviet rocket scientistKonstantin Tsiolkovsky (1857–1935), who published pioneering papers in the late 19th and early 20th centuries onastronautic theory, including calculating theRocket equation and in 1929 introduced the concept of themultistaged rocket.[19][20][21] Additional astronautic andspaceflight theory was also provided by the Ukrainian and Soviet engineer and mathematicianYuri Kondratyuk who developed the first knownlunar orbit rendezvous (LOR), a key concept for landing and return spaceflight from Earth to theMoon.[22][23] The LOR was later used for the plotting of the first actualhuman spaceflight to the Moon. Many other aspects of spaceflight andspace exploration are covered in his works.[24] Both theoretical and practical aspects of spaceflight was also provided by the Latvian pioneer ofrocketry andspaceflightFriedrich Zander,[25] including suggesting in a 1925 paper that a spacecraft traveling between two planets could be accelerated at the beginning of its trajectory and decelerated at the end of its trajectory by using the gravity of the two planets' moons – a method known asgravity assist.[26]
The first Soviet development of rockets was in 1921, when the Soviet military sanctioned the commencement of a small research laboratory to exploresolid fuel rockets, led byNikolai Tikhomirov, a chemical engineer, and supported byVladimir Artemyev, a Soviet engineer.[27][28] Tikhomirov had commenced studying solid andLiquid-fueled rockets in 1894, and in 1915, he lodged a patent for "self-propelled aerial and water-surface mines."[29] In 1928 the laboratory was renamed theGas Dynamics Laboratory (GDL).[30] The First test-firing of a solid fuel rocket was carried out in March 1928, which flew for about 1,300 meters[29] Further developments in the early 1930s were led byGeorgy Langemak.[31] and 1932 in-air test firings ofRS-82 unguided rockets from anTupolev I-4 aircraft armed with six launchers successfully took place.[32]
A key contributor to early soviet efforts came from a young Russian aircraft engineerSergey Korolev, who would later become the de facto head of the Soviet space programme.[33] In 1926, as an advanced student, Korolev was mentored by the famous Soviet aircraft designerAndrey Tupolev, who was a professor at his University.[34] In 1930, while working as a lead engineer on theTupolev TB-3 heavy bomber he became interested in the possibilities of liquid-fueled rocket engines to propel airplanes. This led to contact with Zander, and sparked his interest in space exploration and rocketry.[33]
Practical aspects built on early experiments carried out by members of the 'Group for the Study of Reactive Motion' (better known by its Russian acronym "GIRD") in the 1930s, where Zander, Korolev and other pioneers such as the Russian engineersMikhail Tikhonravov,Leonid Dushkin,Vladimir Vetchinkin and Yuriy Pobedonostsev worked together.[35][36][37] On August 18, 1933, the Leningrad branch of GIRD, led by Tikhonravov,[36] launched the firsthybrid propellant rocket, theGIRD-09,[38] and on November 25, 1933, the Soviet's first liquid-fueled rocketGIRD-X.[39]
In 1933 GIRD was merged with GDL[29] by the Soviet government to form theReactive Scientific Research Institute (RNII),[36] which brought together the best of the Soviet rocket talent, including Korolev, Langemak,Ivan Kleymyonov and former GDL engine designerValentin Glushko.[40][41] Early success of RNII included the conception in 1936 and first flight in 1941 of theRP-318 the Soviets firstrocket-powered aircraft and theRS-82 and RS-132 missiles entered service by 1937,[42] which became the basis for development in 1938 and serial production from 1940 to 1941 of theKatyusha multiple rocket launcher, another advance in the reactive propulsion field.[43][44][45] RNII's research and development were very important for later achievements of the Soviet rocket and space programs.[45][28]
During the 1930s, Soviet rocket technology was comparable to Germany's,[46] butJoseph Stalin'sGreat Purge severely damaged its progress. In November 1937, Kleymyonov and Langemak were arrested and later executed, Glushko and many other leading engineers were imprisoned in theGulag.[47] Korolev was arrested in June 1938 and sent to aforced labour camp in Kolyma in June 1939. However, due to intervention by Tupolev, he was relocated to aprison for scientists and engineers in September 1940.[48]
During World War II rocketry efforts were carried out by three Sovietdesign bureaus.[49] RNII continued to develop and improve solid fuel rockets, including the RS-82 and RS-132 missiles and the Katyusha rocket launcher,[31] where Pobedonostsev and Tikhonravov continued to work on rocket design.[50][51] In 1944, RNII was renamed Scientific Research Institute No 1 (NII-I) and combined with design bureau OKB-293, led by Soviet engineerViktor Bolkhovitinov, which developed, withAleksei Isaev,Boris Chertok,Leonid Voskresensky andNikolay Pilyugin a short-range rocket powered interceptor calledBereznyak-Isayev BI-1.[52]
Special Design Bureau for Special Engines (OKB-SD) was led by Glushko and focused on developing auxiliaryliquid-fueled rocket engines toassist takeoff and climbing of prop aircraft, including the RD-IKhZ, RD-2 and RD-3.[53] In 1944, the RD-1 kHz auxiliary rocket motor was tested in a fast-climbLavochkin La-7R for protection of the capital from high-altitudeLuftwaffe attacks.[54] In 1942 Korolev was transferred to OKB-SD, where he proposed development of the long range missiles D-1 and D-2.[55]
The third design bureau wasPlant No 51 (OKB-51), led by Soviet Ukrainian EngineerVladimir Chelomey, where he created the first Sovietpulsating air jet engine in 1942, independently of similar contemporary developments inNazi Germany.[56][57]
During World War II, Nazi Germany developed rocket technology that was more advanced than theAllies and a race commenced between theSoviet Union and the United States to capture and exploit the technology. Soviet rocket specialist was sent to Germany in 1945 to obtainV-2 rockets and worked with German specialists in Germany and later in the Soviet Union to understand and replicate the rocket technology.[58][59][60] The involvement of German scientists and engineers was an essential catalyst to early Soviet efforts. In 1945 and 1946 the use of German expertise was invaluable in reducing the time needed to master the intricacies of the V-2 rocket, establishing production of theR-1 rocket and enable a base for further developments. On 22 October 1946, 302 German rocket scientists and engineers, including 198 from the Zentralwerke (a total of 495 persons including family members), were deported to the Soviet Union as part ofOperation Osoaviakhim.[61][62][63] However, after 1947 the Soviets made very little use of German specialists and their influence on the future Soviet rocket program was marginal.[64]
The Soviet space program was tied to the USSR'sFive-Year Plans and from the start was reliant on support from the Soviet military. Although he was "single-mindedly driven by the dream of space travel", Korolev generally kept this a secret while working on military projects—especially, after the Soviet Union'sfirst atomic bomb test in 1949, a missile capable of carrying a nuclear warhead to the United States—as many mocked the idea of launching satellites and crewed spacecraft. Nonetheless, the first Soviet rocket with animals aboard launched in July 1951; the two dogs,Dezik and Tsygan, were recovered alive after reaching 101 km in altitude. Two months ahead of America's first such achievement, this and subsequent flights gave the Soviets valuable experience withspace medicine.[65]: 84–88, 95–96, 118
Because of its global range and large payload of approximately five tons, the reliable R-7 was not only effective as a strategic delivery system for nuclear warheads, but also as an excellent basis for a space vehicle. The United States' announcement in July 1955 of its plan to launch a satellite during theInternational Geophysical Year greatly benefited Korolev in persuading Soviet leaderNikita Khrushchev to support his plans.[65]: 148–151 In a letter addressed to Khrushchev, Korolev stressed the necessity of launching a "simple satellite" in order to compete with the American space effort.[66] Plans were approved for Earth-orbiting satellites (Sputnik) to gain knowledge of space, and four uncrewed military reconnaissance satellites,Zenit. Further planned developments called for a crewedEarth orbit flight by and an uncrewed lunar mission at an earlier date.[67]
After the first Sputnik proved to be successful, Korolev—then known publicly only as the anonymous "Chief Designer of Rocket-Space Systems"[65]: 168–169 —was charged to accelerate the crewed program, the design of which was combined with the Zenit program to produce theVostok spacecraft. After Sputnik, Soviet scientists and program leaders envisioned establishing a crewed station to study the effects of zero-gravity and the long term effects on lifeforms in a space environment.[68] Still influenced by Tsiolkovsky—who had chosen Mars as the most important goal for space travel—in the early 1960s, the Soviet program under Korolev created substantial plans for crewed trips to Mars as early as 1968 to 1970. Withclosed-loop life support systems and electrical rocket engines, and launched from large orbiting space stations, these plans were much more ambitious than America's goal oflanding on the Moon.[65]: 333–337
In late 1963 and early 1964 thePolyot 1 and Polyot 2 satellites were launched, these were the first satellites capable of adjusting bothorbital inclination andApsis. This marked a significant step in the potential use of spacecraft inAnti-satellite warfare, as it demonstrated the potential to eventually for unmanned satellites to intercept and destroy other satellites. This would have highlighted the potential use of the space program in a conflict with the US.[69][70][71]
The Soviet space program was secondary in military funding to theStrategic Rocket Forces' ICBMs. While the West believed that Khrushchev personally ordered each new space mission for propaganda purposes, and the Soviet leader did have an unusually close relationship with Korolev and other chief designers, Khrushchev emphasized missiles rather than space exploration and was not very interested in competing with Apollo.[65]: 351, 408, 426–427
While the government and the Communist Party used the program's successes as propaganda tools after they occurred, systematic plans for missions based on political reasons were rare, one exception beingValentina Tereshkova, the first woman in space, onVostok 6 in 1963.[65]: 351 Missions were planned based on rocket availability or ad hoc reasons, rather than scientific purposes. For example, the government in February 1962 abruptly ordered an ambitious mission involving two Vostoks simultaneously in orbit launched "in ten days time" to eclipseJohn Glenn'sMercury-Atlas 6 that month; the program could not do so until August, withVostok 3 andVostok 4.[65]: 354–361
Unlike the American space program, which had NASA as a single coordinating structure directed by its administrator,James Webb through most of the 1960s, the USSR's program was split between several competing design groups. Despite the successes of theSputnik Program between 1957 and 1961 andVostok Program between 1961 and 1964, after 1958 Korolev's OKB-1 design bureau faced increasing competition from his rival chief designers,Mikhail Yangel,Valentin Glushko, andVladimir Chelomei. Korolev planned to move forward with theSoyuz craft andN-1 heavy booster that would be the basis of a permanent crewed space station and crewed exploration of theMoon. However,Dmitry Ustinov directed him to focus on near-Earth missions using theVoskhod spacecraft, a modified Vostok, as well as on uncrewed missions to nearby planetsVenus andMars.[citation needed]
Yangel had been Korolev's assistant but with the support of the military, he was given his own design bureau in 1954 to work primarily on the military space program. This had the stronger rocket engine design team including the use ofhypergolic fuels but following theNedelin catastrophe in 1960 Yangel was directed to concentrate on ICBM development. He also continued to develop his own heavy booster designs similar to Korolev's N-1 both for military applications and for cargo flights into space to build future space stations.[citation needed]
Glushko was the chief rocket engine designer but he had a personal friction with Korolev and refused to develop the large single chamber cryogenic engines that Korolev needed to build heavy boosters.[citation needed]
Chelomey benefited from the patronage of Khrushchev[65]: 418 and in 1960 was given the plum job of developing a rocket to send a crewed vehicle around the Moon and a crewed military space station. With limited space experience, his development was slow.[citation needed]
The progress of the Apollo program alarmed the chief designers, who each advocated for his own program as the response. Multiple, overlapping designs received approval, and new proposals threatened already approved projects. Due to Korolev's "singular persistence", in August 1964—more than three years after the United States declared its intentions—the Soviet Union finally decided to compete for the Moon. It set the goal of a lunar landing in 1967—the 50th anniversary of theOctober Revolution—or 1968.[65]: 406–408, 420 At one stage in the early 1960s the Soviet space program was actively developing multiple launchers and spacecraft. With the fall of Krushchev in 1964, Korolev was given complete control of the crewed program.[72][73]
In 1961,Valentin Bondarenko, a cosmonaut training for a crewed Vostok mission, was killed in an endurance experiment after the chamber he was in caught on fire. The Soviet Union chose to cover up his death and continue on with the space program.[74]
Korolev died in January 1966 from complications of heart disease and severe hemorrhaging following a routine operation that uncoveredcolon cancer.Kerim Kerimov,[75] who had previously served as the head of theStrategic Rocket Forces and had participated in the State Commission forVostok as part of his duties,[76] was appointed Chairman of the State Commission on Piloted Flights and headed it for the next 25 years (1966–1991). He supervised every stage of development and operation of both crewed space complexes as well as uncrewed interplanetary stations for the former Soviet Union. One of Kerimov's greatest achievements was the launch ofMir in 1986.[citation needed]
The leadership of the OKB-1 design bureau was given toVasily Mishin, who hadthe task of sending a human around the Moon in 1967 and landing a human on it in 1968. Mishin lacked Korolev's political authority and still faced competition from other chief designers.[citation needed] Under pressure, Mishin approved the launch of theSoyuz 1 flight in 1967, even though the craft had never been successfully tested on an uncrewed flight. The mission launched with known design problems and ended with the vehicle crashing to the ground, killingVladimir Komarov. This was the first in-flight fatality of any space program.[77]
The Soviets were beaten in sending the first crewed flight around the Moon in 1968 byApollo 8, but Mishin pressed ahead with development of the flawed super heavyN1, in the hope that the Americans would have a setback, leaving enough time to make the N1 workable and land a man on the Moon first. There was a success with the joint flight ofSoyuz 4 andSoyuz 5 in January 1969 that tested the rendezvous, docking, and crew transfer techniques that would be used for the landing, and theLK lander was tested successfully in earth orbit. But after four uncrewed test launches of the N1 ended in failure, the program was suspended for two years and then cancelled, removing any chance of the Soviets landing men on the Moon before the United States.[78]
Besides the crewed landings, the abandoned Soviet Moon program included the multipurpose moon baseZvezda, first detailed with developed mockups of expedition vehicles[79] and surface modules.[80]
Following this setback, Chelomey convinced Ustinov to approve a program in 1970 to advance hisAlmaz military space station as a means of beating the US's announcedSkylab. Mishin remained in control of the project that becameSalyut but the decision backed by Mishin to fly a three-man crew without pressure suits rather than a two-man crew with suits toSalyut 1 in 1971 proved fatal when the re-entry capsule depressurized killing the crew on their return to Earth. Mishin was removed from many projects, with Chelomey regaining control of Salyut. After working withNASA on theApollo–Soyuz, the Soviet leadership decided a new management approach was needed, and in 1974 the N1 was canceled and Mishin was out of office. The design bureau was renamedNPO Energia with Glushko as chief designer.[78]
In contrast with the difficulty faced in its early crewed lunar programs, the USSR found significant success with its remote moon operations, achieving two historical firsts with the automaticLunokhod and the Lunasample return missions. TheMars probe program was also continued with some success, while the explorations of Venus and then of the Halley comet by theVenera andVega probe programs were more effective.[78]
The "Luna" programme, achieved the first flyby of the moon byLuna 1 in 1959 (also marking the first time a probe reached the far side of the moon),[81] the first impact of the moon byLuna 2,[82] and the first photos of the far side of the moon byLuna 3.
As well as garnering scientific information on the moon, Luna 1 was able to detect a strong flow ofionized plasma emanating from the Sun, streaming through interplanetary space. Luna 2 impacted the moon east ofMare Imbrium.[82] Photography transmitted by Luna 3 showed two dark regions which were namedMare Moscoviense (Sea of Moscow) andMare Desiderii (Sea of Dreams), the latter was found to be composed of the smallerMare Ingenii and other dark craters.[83] Luna 2 marked the first time a man-made object has contacted a celestial body. Luna 1 discovered the Moon had no magnetic field.[81]
In 1963, the Soviet Union's "2nd Generation" Luna programme was less successful,Luna 4,Luna 5,Luna 6,Luna 7, andLuna 8 were all met with mission failures. However, in 1966Luna 9 achieved the first soft-landing on the Moon, and successfully transmitted photography from the surface.[84]Luna 10 marked the first man-made object to establish an orbit around the Moon,[85] followed byLuna 11,Luna 12, andLuna 14 which also successfully established orbits.Luna 12 was able to transmit detailed photography of the surface from orbit.[86] Luna 10, 12, andLuna 14 conductedGamma ray spectrometry of the Moon, among other tests.
TheZond programme was orchestrated alongside theLuna programme withZond 1 andZond 2 launching in 1964, intended as flyby missions, however both failed.[87][88]Zond 3 however was successful, and transmitted high quality photography from the far side of the moon.[89][90]
In late 1966,Luna 13 became the third spacecraft to make a soft-landing on the Moon, with the AmericanSurveyor 1 having now taken second.[91]
Zond 4, launched in 1968 was intended as a means to test the possibility of a manned mission to the moon, including methods of a stable re-entry to earth from a Lunar trajectory using a heat shield.[92] It did not flyby the moon, but established an elliptical orbit at Lunar distance. Due to issues with the crafts orientation, it was unable to make a soft-landing in the Soviet union and instead was self destructed. Later in the yearZond 5, carrying twoRussian tortoises became the first man-made object to flyby the moon and return to Earth (as well as the first animal to flyby the moon), splashing down in the Indian Ocean.[93]Zond 6,Zond 7, andZond 8 had similar mission profiles, Zond 6 failed to return to earth safely,Zond 7 did however and returned high quality color photography of the earth and the moon from varying distances,[94] Zond 8 successfully returned to earth after a Lunar flyby.[95]
In 1969,Luna 15 was an intended lunar sample return mission, however resulted in a crash landing.[96] In 1970 howeverLuna 16 became the first robotic probe to land on the Moon and return a surface sample, having drilled 35 cm into the surface,[97] to Earth and represented the first lunar sample return mission by the Soviet Union and the third overall, having followed theApollo 11 andApollo 12 crewed missions.
Luna 17,Luna 21 andLuna 24 delivered rovers onto the surface of the moon.[98]Luna 20 was another successful sample return mission.[99]Luna 18 andLuna 23 resulted in crash landings.
In total there were 24 missions in theLuna Programme, 15 were considered to be successful, including 4 hard landings and 3 soft landings, 6 orbits, and 2 flybys. The programme was continued after the collapse of the Soviet union, when theRussian federation space agency launchedLuna 25 in 2023.[100]
TheVenera programme marked many firsts in space exploration andexplorations of Venus.Venera 1 andVenera 2 resulted in failure due to losses of contact,Venera 3, which also lost contact, marked the first time a man-made object made contact with another planet after it impacted Venus on March 1, 1966.Venera 4,Venera 5, andVenera 6 performed successful atmospheric entry. In 1970Venera 7 marked the first time a spacecraft was able to return data after landing on another planet.[101]
Venera 7 held a resistantthermometer and an aneroidbarometer to measure the temperature and atmospheric pressure on the surface, the transmitted data showed 475 C at the surface, and a pressure of 92 bar. A wind of 2.5 meters/sec was extrapolated from other measurements. The landing point of Venera 7 was5°S9°W / 5°S 9°W /-5; -9.[102][103] Venera 7 impacted the surface at a somewhat high speed of 17 metres per second, later analysis of the recorded radio signals revealed that the probe had survived the impact and continued transmitting a weak signal for another 23 minutes. It is believed that the spacecraft may have bounced upon impact and come to rest on its side, so the antenna was not pointed towards Earth.[101][104]
In 1972,Venera 8 landed on Venus and measured the light level as being suitable for surface photography, finding it to be similar to the amount of light on Earth on an overcast day with roughly 1 km visibility.[105]
In 1975,Venera 9 established an orbit around Venus and successfully returned the first photography of the surface of Venus.[106][107]Venera 10 landed on Venus and followed with further photography shortly after.[108]
In 1978,Venera 11 andVenera 12 successfully landed, however ran into issues performing photography and soil analysis. Venera 11's light sensor detected lightning strikes.[109][110][111]
In 1981,Venera 13 performed a successful soft-landing on Venus and marked the first probe to drill into the surface of another planet and take a sample.[112][113] Venera 13 also took an audio sample of the Venusian environment, marking another first.[114]
Venera 13 returned the first color images of the surface of Venus, revealing an orange-brown flat bedrock surface covered with looseregolith and small flat thin angular rocks. The composition of the sample determined by the X-ray fluorescence spectrometer put it in the class of weakly differentiated melanocratic alkaline gabbroids, similar to terrestrial leucitic basalt with a high potassium content. The acoustic detector returned the sounds of the spacecraft operations and the background wind, estimated to be a speed of around 0.5 m/sec wind.[112]
Venera 14, an identical spacecraft to Venera 13, launched 5 days apart. The mission profiles were very similar, except 14 ran into issues using it's spectrometer to analyze the soil.[115]
In total 10 Venera probes achieved a soft landing on the surface of Venus.
In 1984, theVega programme began and ended with the launch of two crafts launched 6 days apart,Vega 1 andVega 2. Both crafts deployed a balloon in addition to a lander, marking a first in spaceflight.[116][117][118]
The first Soviet mission toexplore Mars,Mars 1, was launched in 1962. Although it was intended to fly by the planet and transmit scientific data, the spacecraft lost contact before reaching Mars, marking a setback for the program. In 1971, the Soviet Union launchedMars 2 andMars 3. Mars 2 became the first spacecraft to reach the surface of mars, however this was ahard landing and was destroyed on impact.[119][120] However, Mars 3 achieved a historic milestone by becoming the first successful soft landing on Mars. Mars 3 used parachutes and rockets as part of its landing system, however contacted the surface at a somewhat high speed of 20 metres per second. Unfortunately, its lander transmitted data for only up to 20 seconds before it went silent.[121]
Following the initial successes and setbacks, theMars 4,Mars 5,Mars 6, andMars 7 missions were launched between 1969 and 1973. Mars 4 and Mars 5 performed successful flybys, performing analysis which detected the presence of a weak Ozone layer and magnetic field corroborating analysis done by the AmericanMariner 4 andMariner 9.[122] Mars 6 and Mars 7 failed to successfully land.[123]
TheSalyut programme was a series of missions which established the first earth orbit Space station.[124] "Salyut" meaning "Salute" translated.
Initially, theSalyut stations served as research laboratories in orbit.Salyut 1, the first in the series, launched in 1971, was primarily a civilian scientific mission. The crew set a then record-setting 24-day mission though its tragic end due to the death of theSoyuz-11 crew after a docking accident underscored the high risks of human spaceflight.[125] Following this, the Soviet Union also developedSalyut 2 andSalyut 3, which featured reconnaissance capabilities and carried alarge gun,[124][126] both ran into significant issues during their missions.[127][128] This dual use design of both scientific and military research applications demonstrated the Soviet Union's strategy of blending scientific achievement with defense applications.
As theSalyut program progressed, later missions likeSalyut 6 andSalyut 7 improved upon earlier designs by allowing long-duration crewed missions and more complex experiments. These stations, with their expanded crew capacity and amenities for long term stay, carrying electric stoves, a refrigerator, and constant hot water.[129] TheSalyut series effectively paved the way for future Soviet and later Russian space stations, including theMir space station, which would become a significant part in the history of long-term space exploration.
The longest stay, aboard Salyut 7, was 237 days.[130]
The Soviet space program had withheld information on its projects predating the success ofSputnik, the world's first artificial satellite. In fact, when the Sputnik project was first approved, one of the most immediate courses of action thePolitburo took was to consider what to announce to the world regarding their event.[131]
TheTelegraph Agency of the Soviet Union (TASS) established precedents for all official announcements on the Soviet space program.[132] The information eventually released did not offer details on who built and launched the satellite or why it was launched. The public release revealed, "there is an abundance of arcane scientific and technical data... as if to overwhelm the reader with mathematics in the absence of even a picture of the object".[7] What remains of the release is the pride for Sovietcosmonautics and the vague hinting of future possibilities then available afterSputnik's success.[133]
The Soviet space program's use of secrecy served as both a tool to prevent the leaking of classified information between countries and also to create a mysterious barrier between the space program and the Soviet populace. The program's nature embodied ambiguous messages concerning its goals, successes, and values. Launchings were not announced until they took place.Cosmonaut names were not released until they flew. Mission details were sparse. Outside observers did not know the size or shape of their rockets or cabins or most of their spaceships, except for the first Sputniks, lunar probes and Venus probe.[134]
However, the military influence over the Soviet space program may be the best explanation for this secrecy. TheOKB-1 was subordinated under theMinistry of General Machine-Building,[7] tasked with the development of intercontinental ballistic missiles, and continued to give its assets random identifiers into the 1960s: "For example, theVostok spacecraft was referred to as 'object IIF63' while its launch rocket was 'object 8K72K'".[7] Soviet defense factories had been assigned numbers rather than names since 1927. Even these internal codes were obfuscated: in public, employees used a separate code, a set of special post-office numbers, to refer to the factories, institutes, and departments.
The program's public pronouncements were uniformly positive: as far as the people knew, the Soviet space program had never experienced failure. According to historian James Andrews, "With almost no exceptions, coverage of Soviet space exploits, especially in the case of human space missions, omitted reports of failure or trouble".[7]
According to Dominic Phelan in the bookCold War Space Sleuths, "TheUSSR was famously described byWinston Churchill as 'a riddle, wrapped in a mystery, inside an enigma' and nothing signified this more than the search for the truth behind its space program during the Cold War. Although theSpace Race was literally played out above our heads, it was often obscured by a figurative 'space curtain' that took much effort to see through."[134][135]
The Soviet space program's projects include:
Two days after the United States announced its intention to launch anartificial satellite, on July 31, 1955, the Soviet Union announced its intention to do the same.Sputnik 1 was launched on October 4, 1957, beating the United States and stunning people all over the world.[136]
The Soviet space program pioneered many aspects of space exploration:
The Soviet space program experienced a number of fatal incidents and failures.[139]
The first official cosmonaut fatality during training occurred on March 23, 1961, whenValentin Bondarenko died in a fire within a low pressure, high oxygen atmosphere.
On April 23, 1967,Soyuz 1 crashed into the ground at 90 mph (140 km/h) due to a parachute failure, killingVladimir Komarov. Komarov's death was the firstin-flight fatality in thehistory of spaceflight.[140][141]
The Soviets continued striving for the first lunar mission with theN-1 rocket, which exploded on each of four uncrewed tests shortly after launch. TheAmericans won the race to land men on the Moon withApollo 11 on July 20, 1969.
In 1971, theSoyuz 11 mission to stay at theSalyut 1 space station resulted in the deaths of three cosmonauts when the reentry capsule depressurized during preparations for reentry. This accident resulted in the only human casualties to occur in space (beyond 100 km (62 mi), as opposed to the high atmosphere). The crew members aboard Soyuz 11 wereVladislav Volkov,Georgy Dobrovolsky, andViktor Patsayev.
On April 5, 1975,Soyuz 7K-T No.39, the second stage of a Soyuz rocket carrying two cosmonauts to theSalyut 4 space station malfunctioned, resulting in the first crewed launch abort. The cosmonauts were carried several thousand miles downrange and became worried that they would land in China,which the Soviet Union was having difficult relations with at the time. The capsule hit a mountain, sliding down a slope and almost slid off a cliff; however, the parachute lines snagged on trees and kept this from happening. As it was, the two suffered severe injuries and the commander, Lazarev, never flew again.
On March 18, 1980, aVostok rocketexploded on its launch pad during a fueling operation, killing 48 people.[142]
In August 1981,Kosmos 434, which had been launched in 1971, was about to re-enter. To allay fears that the spacecraft carried nuclear materials, a spokesperson from theMinistry of Foreign Affairs of the USSR assured the Australian government on 26 August 1981, that the satellite was "an experimental lunar cabin". This was one of the first admissions by the Soviet Union that it had ever engaged in a crewed lunar spaceflight program.[65]: 736
In September 1983, a Soyuz rocket being launched to carry cosmonauts to theSalyut 7 space station exploded on the pad, causing the Soyuz capsule's abort system to engage, saving the two cosmonauts on board.[143]
The SovietBuran program attempted to produce a class of spaceplanes launched from theEnergia rocket, in response to the USSpace Shuttle. It was intended to operate in support of large space-based military platforms as a response to theStrategic Defense Initiative. Buran only had orbital maneuvering engines, unlike the Space Shuttle, Buran did not fire engines during launch, instead relying entirely on Energia to lift it out of the atmosphere. It copied the airframe andthermal protection system design of the USSpace Shuttle Orbiter, with a maximum payload of 30 metric tons (slightly higher than that of the Space Shuttle), and weighed less.[144] It also had the capability to land autonomously. Due to this, some retroactively consider it to be the more capable launch vehicle.[145] By the time the system was ready to fly in orbit in 1988, strategic arms reduction treaties made Buran redundant. On November 15, 1988, Buran and its Energia rocket were launched fromBaikonur Cosmodrome inKazakhstan, and after two orbits in three hours, glided to a landing a few miles from its launch pad.[146] While the craft survived that re-entry, the heat shield was not reusable. This failure resulted from United States counter intelligence efforts.[147] After this test flight, the Soviet Ministry of Defense would defund the program, considering it relatively pointless compared to its price.[148]
ThePolyus satellite was a prototypeorbital weapons platform designed to destroyStrategic Defense Initiative satellites with a megawattcarbon-dioxide laser.[149] Launched mounted upside-down on itsEnergia rocket, its single flight test was a failure when theinertial guidance system failed to rotate it 180° and instead rotated a complete 360°.[150]
TheEnergia was a successfully developedsuper heavy-lift launch vehicle which burnedliquid hydrogen fuel. But without the Buran or Polyus payloads to launch, it was also canceled due to lack of funding on dissolution of the USSR.
TheVesta mission would have consisted of two identical double-purposed interplanetary probes to be launched in 1991. It was intended to fly-by Mars (instead of an early plan to Venus) and then study four asteroids belonging to different classes. At4 Vesta a penetrator would be released.
The Tsiolkovsky mission was planned as a double-purposed deep interplanetary probe to be launched in the 1990s to make a "sling shot" flyby ofJupiter and then pass within five or seven radii of theSun. A derivative of this spacecraft would possibly be launched towardSaturn and beyond.[151]
An order from Moscow was read to the people who had been awakened from their sleep, in which they were informed that the Zentralwerke were to be relocated to the Soviet Union, which affected both the facilities and equipment and the personnel.
{{cite web}}
: CS1 maint: multiple names: authors list (link)